skip to main content


Search for: All records

Creators/Authors contains: "Roy, H. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Imidazolium-based cations and the hexafluorophosphate anion are among the most commonly used ionic liquids (ILs). Yet, the nature and strength of the intrinsic cation–anion interactions, and how they influence the macroscopic properties of these ILs are still not well understood. Threshold collision-induced dissociation is utilized to determine the bond dissociation energies (BDEs) of the 2 : 1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [2C n mim:PF 6 ] + . The cation, [C n mim] + , is varied across the series, 1-ethyl-3-methylimidazolium [C 2 mim] + , 1-butyl-3-methylimidazolium [C 4 mim] + , 1-hexyl-3-methylimidazolium [C 6 mim] + , 1-octyl-3-methylimidazolium [C 8 mim] + , to examine the structural and energetic effects of the size of the 1-alkyl substituent of the cation on the binding to [PF 6 ] − . Complementary electronic structure methods are employed for the [C n mim] + cations, (C n mim:PF 6 ) ion pairs, and [2C n mim:PF 6 ] + clusters to elucidate details of the cation–anion interactions and their impact on structure and energetics. Multiple levels of theory are benchmarked with the measured BDEs including B3LYP, B3LYP-GD3BJ, and M06-2X each with the 6-311+G(d,p) basis set for geometry optimizations and frequency analyses and the 6-311+G(2d,2p) basis set for energetic determinations. The modest structural variation among the [C n mim] + cations produces only minor structural changes and variation in the measured BDEs of the [2C n mim:PF 6 ] + clusters. Present results are compared to those previously reported for the analogous 1-alkyl-3-methylimidazolium tetrafluoroborate IL clusters to compare the effects of these anions on the nature and strength of the intrinsic binding interactions. 
    more » « less
  2. Cisplatin, (NH 3 ) 2 PtCl 2 , has been known as a successful metal-based anticancer drug for more than half a century. Its analogue, Argplatin, arginine-linked cisplatin, (Arg)PtCl 2 , is being investigated because it exhibits reactivity towards DNA and RNA that differs from that of cisplatin. In order to understand the basis for its altered reactivity, the deprotonated and sodium cationized forms of Argplatin, [(Arg-H)PtCl 2 ] − and [(Arg)PtCl 2 + Na] + , are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy in the IR fingerprint and hydrogen-stretching regions. Complementary electronic structure calculations are performed using density functional theory approaches to characterize the stable structures of these complexes and to predict their infrared spectra. Comparison of the theoretical IR spectra predicted for various stable conformations of these Argplatin complexes to their measured IRMPD spectra enables determination of the binding mode(s) of Arg to the Pt metal center to be identified. Arginine is found to bind to Pt in a bidentate fashion to the backbone amino nitrogen and carboxylate oxygen atoms in both the [(Arg-H)PtCl 2 ] − and [(Arg)PtCl 2 + Na] + complexes, the NO − binding mode. The neutral side chain of Arg also interacts with the Pt center to achieve additional stabilization in the [(Arg-H)PtCl 2 ] − complex. In contrast, Na + binds to both chlorido ligands in the [(Arg)PtCl 2 + Na] + complex and the protonated side chain of Arg is stabilized via hydrogen-bonding interactions with the carboxylate moiety. These findings are consistent with condensed-phase results, indicating that the NO − binding mode of arginine to Pt is preserved in the electrospray ionization process even under variable pH and ionic strength. 
    more » « less
  3. Abstract

    Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra‐pair paternity. Advanced dawn song of males may stimulate females to engage in extra‐pair copulations, and the earlier activity onset may affect the males’ mate guarding behavior. Earlier work showed an effect of light at night on extra‐pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two‐year experimental study on effects of light at night on extra‐pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra‐pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra‐pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra‐pair paternity, possibly negates potential benefits of extra‐pair copulations and thus could alter sexual selection processes in wild birds.

     
    more » « less