skip to main content


Search for: All records

Creators/Authors contains: "Roy, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the “library” of visible light initiators is limited compared with the wealth of options available for UV polymerization. Furthermore, the synthesis of traditional photoinitiators relies on diminishing raw materials, and several traditional photoinitiators are considered emerging environmental contaminants. As such, there has been recent focus on identifying and characterizing biologically sourced, visible light‐based photoinitiator systems that can be effectively used in photopolymerization applications. In this regard, several bio‐sourced molecules have been shown to act as photoinitiators, primarily through Type II photoinitiation mechanisms. However, whether bio‐sourced molecules can also act as effective synergists in these reactions remains unknown. In this study, we evaluated the effectiveness of bio‐sourced synergist candidates, with a focus on amino acids, due to their amine functional groups, in combination with two bio‐sourced photoinitiator molecules: riboflavin and curcumin. We tested the effectiveness of these photoinitiator systems under both violet (405 nm) and blue (460–475 nm) light using photo‐rheology. We found that several synergist candidates, namely lysine, arginine, and histidine, increased the polymerization effectiveness of riboflavin when used with both violet and blue light. With curcumin, we found that almost all tested synergist candidates slightly decreased the polymerization effectiveness compared with curcumin alone under both light sources. These results show that bio‐sourced molecules have the potential to be used as synergists with bio‐sourced photoinitiators in visible light photopolymerization. However, more work must be done to fully characterize these reactions and to investigate more synergist candidates. Ultimately, this information is expected to expand the range of available visible light‐based photoinitiator systems and increase their sustainability.

     
    more » « less
  2. Abstract

    Classical shadows provide a noise-resilient and sample-efficient method for learning quantum system properties, relying on a user-specified unitary ensemble. What is the weakest assumption on this ensemble that can still yield meaningful results? To address this, we focus on Pauli-invariant unitary ensembles—those invariant under multiplication by Pauli operators. For these ensembles, we present explicit formulas for the reconstruction map and sample complexity bounds and extend our results to the case when noise impacts the protocol implementation. Two applications are explored: one for locally scrambled unitary ensembles, where we present formulas for the reconstruction map and sample complexity bounds that circumvent the need to solve an exponential-sized linear system, and another for the classical shadows of quantum channels. Our results establish a unified framework for classical shadows with Pauli-invariant unitary ensembles, applicable to both noisy and noiseless scenarios for states and channels and primed for implementation on near-term quantum devices.

     
    more » « less
  3. Free, publicly-accessible full text available September 17, 2024
  4. A substantial investment by the National Science Foundation (NSF), including awards from Engineering Education and Centers in the Engineering Directorate and the Division of Undergraduate Education in the Education and Human Resources Directorate, has led to the creation and study of the Multiple Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD). This large database of student records has yielded groundbreaking research on student pathways by a small interdisciplinary team of researchers. The team has shown that while individual engineering programs may have poor graduation rates, a multi-institutional view reveals that engineering programs as a whole graduate a larger fraction of students than other groups of disciplines. The team has also shown that women and men have similar graduation rates in engineering, likely a result of efforts to make engineering education a welcoming environment for women and the high academic credentials of the women who do study engineering. As with the overall graduation rate, individual institutions and programs can and do have outcomes that depart from this aggregate perspective. A comprehensive study of student pathways in various engineering disciplines provided practitioners with rich information specific to their disciplinary context. The team has also designed a variety of metrics that have provided researchers and practitioners with an improved understanding of student pathways. The quality of the data source and the research team is attested by these substantial findings, multiple best paper awards, and other recognitions. This paper provides updates on transitioning MIDFIELD to the American Society for Engineering Education (ASEE), documentation of institutional policies, and supporting a growing community of researchers in using the database including the second offering of the MIDFIELD Institute. This work is supported by the NSF Division of Engineering Education and Centers. 
    more » « less
  5. Summary

    Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP‐xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated.

    Singlexxt3and triplexxt3xxt4xxt5mutantArabidopsis(Arabidopsis thaliana) plants were generated using CRISPR‐Cas9 technology to determine the specific function of XXT3.

    Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG‐type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG‐type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue‐specific manner.

    The newly generatedxxt3xxt4xxt5mutant produces only XXGG‐type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development.

     
    more » « less
  6. State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13 CO molecules with N 2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13 CO + CO rotationally inelastic scattering described in a previously published report (Sun et al. , Science , 2020, 369 , 307–309). The collisionally excited 13 CO molecule products are detected by the same (1 + 1′ + 1′′) VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13 CO + N 2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13 CO–N 2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13 CO–N 2 potential energy surface for the 1460 cm −1 collision energy studied by experiment. Experimental results for 13 CO + N 2 are compared with those for 13 CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13 CO + CO measurements, the primary rainbow maximum in the DCSs for 13 CO + N 2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13 CO–N 2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13 CO + CO does not appear for 13 CO–N 2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13 CO + N 2 trajectories compared to 13 CO + CO trajectories, which shows the special ‘do-si-do’ pathway invoked for 13 CO + CO is not effective for 13 CO + N 2 collisions. 
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  7. A<sc>bstract</sc>

    The existence of barren plateaus has recently revealed new training challenges in quantum machine learning (QML). Uncovering the mechanisms behind barren plateaus is essential in understanding the scope of problems that QML can efficiently tackle. Barren plateaus have recently been shown to exist when learning global properties of random unitaries, which is relevant when learning black hole dynamics. Establishing whether local cost functions can circumvent these barren plateaus is pertinent if we hope to apply QML to quantum many-body systems. We prove a no-go theorem showing that local cost functions encounter barren plateaus in learning random unitary properties.

     
    more » « less
  8. Huszdk, T. ; Mahler, A. ; Koch, E. (Ed.)