skip to main content


Search for: All records

Creators/Authors contains: "Roy, Nirmalya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdm datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model. 
    more » « less
  2. Language-guided smart systems can help to design next-generation human-machine interactive applications. The dense text description is one of the research areas where systems learn the semantic knowledge and visual features of each video frame and map them to describe the video's most relevant subjects and events. In this paper, we consider untrimmed sports videos as our case study. Generating dense descriptions in the sports domain to supplement journalistic works without relying on commentators and experts requires more investigation. Motivated by this, we propose an end-to-end automated text-generator, SpecTextor, that learns the semantic features from untrimmed videos of sports games and generates associated descriptive texts. The proposed approach considers the video as a sequence of frames and sequentially generates words. After splitting videos into frames, we use a pre-trained VGG-16 model for feature extraction and encoding the video frames. With these encoded frames, we posit a Long Short-Term Memory (LSTM) based attention-decoder pipeline that leverages soft-attention mechanism to map the semantic features with relevant textual descriptions to generate the explanation of the game. Because developing a comprehensive description of the game warrants training on a set of dense time-stamped captions, we leverage two available public datasets: ActivityNet Captions and Microsoft Video Description. In addition, we utilized two different decoding algorithms: beam search and greedy search and computed two evaluation metrics: BLEU and METEOR scores. 
    more » « less
  3. With the advancement of modern robotics, autonomous agents are now capable of hosting sophisticated algorithms, which enables them to make intelligent decisions. But developing and testing such algorithms directly in real-world systems is tedious and may result in the wastage of valuable resources. Especially for heterogeneous multi-agent systems in battlefield environments where communication is critical in determining the system’s behavior and usability. Due to the necessity of simulators of separate paradigms (co-simulation) to simulate such scenarios before deploying, synchronization between those simulators is vital. Existing works aimed at resolving this issue fall short of addressing diversity among deployed agents. In this work, we propose SynchroSim, an integrated co-simulation middleware to simulate a heterogeneous multi-robot system. Here we propose a velocity difference-driven adjustable window size approach with a view to reducing packet loss probability. It takes into account the respective velocities of deployed agents to calculate a suitable window size before transmitting data between them. We consider our algorithm specific simulator agnostic but for the sake of implementation results, we have used Gazebo as a Physics simulator and NS-3 as a network simulator. Also, we design our algorithm considering the Perception-Action loop inside a closed communication channel, which is one of the essential factors in a contested scenario with the requirement of high fidelity in terms of data transmission. We validate our approach empirically at both the simulation and system level for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Our approach achieves a noticeable improvement in terms of reducing packet loss probability (≈11%), and average packet delay (≈10%) compared to the fixed window size-based synchronization approach. 
    more » « less