skip to main content


Search for: All records

Creators/Authors contains: "Rudnick, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thin synchrotron-emitting filaments are increasingly seen in the intracluster medium (ICM). We present the first example of a direct interaction between a magnetic filament, a radio jet, and a dense ICM clump in the poor cluster A194. This enables the first exploration of the dynamics and possible histories of magnetic fields and cosmic rays in such filaments. Our observations are from the MeerKAT Galaxy Cluster Legacy Survey and the LOFAR Two-Meter Sky Survey. Prominent 220 kpc long filaments extend east of radio galaxy 3C40B, with very faint extensions to 300 kpc, and show signs of interaction with its northern jet. They curve around a bend in the jet and intersect the jet in Faraday depth space. The X-ray surface brightness drops across the filaments; this suggests that the relativistic particles and fields contribute significantly to the pressure balance and evacuate the thermal plasma in a ∼35 kpc cylinder. We explore whether the relativistic electrons could have streamed along the filaments from 3C40B, and present a plausible alternative whereby magnetized filaments are (a) generated by shear motions in the large-scale, post-merger ICM flow, (b) stretched by interactions with the jet and flows in the ICM, amplifying the embedded magnetic fields, and (c) perfused by re-energized relativistic electrons through betatron-type acceleration or diffusion of turbulently accelerated ICM cosmic-ray electrons. We use the Faraday depth measurements to reconstruct some of the 3D structures of the filameGnts and of 3C40A and B.

     
    more » « less
  2. Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity ( z  = 0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = −56.8°, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed view of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet’s cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena. 
    more » « less
  3. ABSTRACT Odd radio circles (ORCs) are recently-discovered faint diffuse circles of radio emission, of unknown cause, surrounding galaxies at moderate redshift (z ∼ 0.2 – 0.6). Here, we present detailed new MeerKAT radio images at 1284 MHz of the first ORC, originally discovered with the Australian Square Kilometre Array Pathfinder, with higher resolution (6 arcsec) and sensitivity (∼ 2.4 μJy/beam). In addition to the new images, which reveal a complex internal structure consisting of multiple arcs, we also present polarization and spectral index maps. Based on these new data, we consider potential mechanisms that may generate the ORCs. 
    more » « less
  4. null (Ed.)
    The presence of relativistic electrons within the diffuse gas phase of galaxy clusters is now well established, thanks to deep radio observations obtained over the last decade, but their detailed origin remains unclear. Cosmic ray protons are also expected to accumulate during the formation of clusters. They may explain part of the radio signal and would lead to γ -ray emission through hadronic interactions within the thermal gas. Recently, the detection of γ -ray emission has been reported toward the Coma cluster with Fermi -LAT. Assuming that this γ -ray emission arises essentially from pion decay produced in proton-proton collisions within the intracluster medium (ICM), we aim at exploring the implication of this signal on the cosmic ray content of the Coma cluster and comparing it to observations at other wavelengths. We use the MINOT software to build a physical model of the Coma cluster, which includes the thermal target gas, the magnetic field strength, and the cosmic rays, to compute the corresponding expected γ -ray signal. We apply this model to the Fermi -LAT data using a binned likelihood approach, together with constraints from X-ray and Sunyaev-Zel’dovich observations. We also consider contamination from compact sources and the impact of various systematic effects on the results. We confirm that a significant γ -ray signal is observed within the characteristic radius θ 500 of the Coma cluster, with a test statistic TS ≃ 27 for our baseline model. The presence of a possible point source (4FGL J1256.9+2736) may account for most of the observed signal. However, this source could also correspond to the peak of the diffuse emission of the cluster itself as it is strongly degenerate with the expected ICM emission, and extended models match the data better. Given the Fermi -LAT angular resolution and the faintness of the signal, it is not possible to strongly constrain the shape of the cosmic ray proton spatial distribution when assuming an ICM origin of the signal, but preference is found in a relatively flat distribution elongated toward the southwest, which, based on data at other wavelengths, matches the spatial distribution of the other cluster components well. Assuming that the whole γ -ray signal is associated with hadronic interactions in the ICM, we constrain the cosmic ray to thermal energy ratio within R 500 to X CRp = 1.79 −0.30 +1.11 % and the slope of the energy spectrum of cosmic rays to α = 2.80 −0.13 +0.67 ( X CRp = 1.06 −0.22 +0.96 % and α = 2.58 −0.09 +1.12 when including both the cluster and 4FGL J1256.9+2736 in our model). Finally, we compute the synchrotron emission associated with the secondary electrons produced in hadronic interactions assuming steady state. This emission is about four times lower than the overall observed radio signal (six times lower when including 4FGL J1256.9+2736), so that primary cosmic ray electrons or reacceleration of secondary electrons is necessary to explain the total emission. We constrain the amplitude of the primary to secondary electrons, or the required boost from reacceleration with respect to the steady state hadronic case, depending on the scenario, as a function of radius. Our results confirm that γ -ray emission is detected in the direction of the Coma cluster. Assuming that the emission is due to hadronic interactions in the intracluster gas, they provide the first quantitative measurement of the cosmic ray proton content in a galaxy cluster and its implication for the cosmic ray electron populations. 
    more » « less
  5. We present wideband (1 − 6.5 GHz) polarimetric observations, obtained with the Karl G. Jansky Very Large Array, of the merging galaxy cluster MACS J0717.5+3745, which hosts one of the most complex known radio relic and halo systems. We used both rotation measure synthesis and QU -fitting to find a reasonable agreement of the results obtained with these methods, particularly when the Faraday distribution is simple and the depolarization is mild. The relic is highly polarized over its entire length (850 kpc), reaching a fractional polarization > 30% in some regions. We also observe a strong wavelength-dependent depolarization for some regions of the relic. The northern part of the relic shows a complex Faraday distribution, suggesting that this region is located in or behind the intracluster medium (ICM). Conversely, the southern part of the relic shows a rotation measure very close to the Galactic foreground, with a rather low Faraday dispersion, indicating very little magnetoionic material intervening along the line of sight. Based on a spatially resolved polarization analysis, we find that the scatter of Faraday depths is correlated with the depolarization, indicating that the tangled magnetic field in the ICM causes the depolarization. We conclude that the ICM magnetic field could be highly turbulent. At the position of a well known narrow-angle-tailed galaxy (NAT), we find evidence of two components that are clearly separated in the Faraday space. The high Faraday dispersion component seems to be associated with the NAT, suggesting the NAT is embedded in the ICM while the southern part of the relic lies in front of it. If true, this implies that the relic and this radio galaxy are not necessarily physically connected and, thus, the relic may, in fact, not be powered by the shock re-acceleration of fossil electrons from the NAT. The magnetic field orientation follows the relic structure indicating a well-ordered magnetic field. We also detected polarized emission in the halo region; however, the absence of significant Faraday rotation and a low value of Faraday dispersion suggests the polarized emission that was previously considered as the part of the halo does, in fact, originate from the shock(s). 
    more » « less
  6. null (Ed.)
    ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $\gt 60$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments. 
    more » « less
  7. null (Ed.)
  8. Context. The Shapley Supercluster (⟨ z ⟩≈0.048) contains several tens of gravitationally bound clusters and groups, making it an ideal subject for radio studies of cluster mergers. Aims. We used new high sensitivity radio observations to investigate the less energetic events of mass assembly in the Shapley Supercluster from supercluster down to galactic scales. Methods. We created total intensity images of the full region between A3558 and A3562, from ∼230 to ∼1650 MHz, using ASKAP, MeerKAT and the GMRT, with sensitivities ranging from ∼6 to ∼100 μJy beam −1 . We performed a detailed morphological and spectral study of the extended emission features, complemented with ESO-VST optical imaging and X-ray data from XMM-Newton . Results. We report the first GHz frequency detection of extremely low brightness intercluster diffuse emission on a ∼1 Mpc scale connecting a cluster and a group, namely: A3562 and the group SC 1329–313. It is morphologically similar to the X-ray emission in the region. We also found (1) a radio tail generated by ram pressure stripping in the galaxy SOS 61086 in SC 1329–313; (2) a head-tail radio galaxy, whose tail is broken and culminates in a misaligned bar; (3) ultrasteep diffuse emission at the centre of A3558. Finally (4), we confirm the ultra-steep spectrum nature of the radio halo in A3562. Conclusions. Our study strongly supports the scenario of a flyby of SC 1329–313 north of A3562 into the supercluster core. This event perturbed the centre of A3562, leaving traces of this interaction in the form of turbulence between A3562 and SC 1329–313, at the origin of the radio bridge and eventually affecting the evolution of individual supercluster galaxies by triggering ram pressure stripping. Our work shows that minor mergers can be spectacular and have the potential to generate diffuse radio emission that carries important information on the formation of large-scale structures in the Universe. 
    more » « less
  9. null (Ed.)
  10. null (Ed.)
    We present an analysis of archival Chandra data of the merging galaxy cluster ClG 0217+70. The Fe  XXV He α X-ray emission line is clearly visible in the 25 ks observation, allowing a precise determination of the redshift of the cluster as z  = 0.180 ± 0.006. We measure k T 500  = 8.3  ±  0.4 keV and estimate M 500  = (1.06 ± 0.11) × 10 15   M ⊙ based on existing scaling relations. Correcting both the radio and X-ray luminosities with the revised redshift reported here, which is much larger than previously inferred based on sparse optical data, this object is no longer an X-ray underluminous outlier in the L X  −  P radio scaling relation. The new redshift also means that, in terms of physical scale, ClG 0217+70 hosts one of the largest radio halos and one of the largest radio relics known to date. Most of the relic candidates lie in projection beyond r 200 . The X-ray morphological parameters suggest that the intracluster medium is still dynamically disturbed. Two X-ray surface brightness discontinuities are confirmed in the northern and southern parts of the cluster, with density jumps of 1.40 ± 0.16 and 3.0 ± 0.6, respectively. We also find a 700 × 200 kpc X-ray faint channel in the western part of the cluster, which may correspond to compressed heated gas or increased non-thermal pressure due to turbulence or magnetic fields. 
    more » « less