skip to main content


Search for: All records

Creators/Authors contains: "Ruiz���Aravena, Manuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.

     
    more » « less
  2. Becker, Daniel (Ed.)
    The black flying fox ( Pteropus alecto ) is a natural reservoir for Hendra virus, a paramyxovirus that causes fatal infections in humans and horses in Australia. Increased excretion of Hendra virus by flying foxes has been hypothesized to be associated with physiological or energetic stress in the reservoir hosts. The objective of this study was to explore the leukocyte profiles of wild-caught P . alecto , with a focus on describing the morphology of each cell type to facilitate identification for clinical purposes and future virus spillover research. To this end, we have created an atlas of images displaying the commonly observed morphological variations across each cell type. We provide quantitative and morphological information regarding the leukocyte profiles in bats captured at two roost sites located in Redcliffe and Toowoomba, Queensland, Australia, over the course of two years. We examined the morphology of leukocytes, platelets, and erythrocytes of P . alecto using cytochemical staining and characterization of blood films through light microscopy. Leukocyte profiles were broadly consistent with previous studies of P . alecto and other Pteropus species. A small proportion of individual samples presented evidence of hemoparasitic infection or leukocyte morphological traits that are relevant for future research on bat health, including unique large granular lymphocytes. Considering hematology is done by visual inspection of blood smears, examples of the varied cell morphologies are included as a visual guide. To the best of our knowledge, this study provides the first qualitative assessment of P . alecto leukocytes, as well as the first set of published hematology reference images for this species. 
    more » « less
  3. Abstract Background Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. Results We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. Conclusions Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival. 
    more » « less
  4. Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen. 
    more » « less