skip to main content


Search for: All records

Creators/Authors contains: "Russell, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. - (Ed.)
    High-pressure studies on elements play an essential role in superconductivity research, with implications for both fundamental science and applications. Here we report the experimental discovery of surprisingly low pressure driving a novel germanium allotrope into a superconducting state in comparison to that for α-Ge. Raman measurements revealed structural phase transitions and possible electronic topological transitions under pressure up to 58 GPa. Based on pressure-dependent resistivity measurements, superconductivity was induced above 2 GPa and the maximum Tc of 6.8 K was observed under 4.6 GPa. Interestingly, a superconductivity enhancement was discovered during decompression, indicating the possibility of maintaining pressure-induced superconductivity at ambient pressure with better superconducting performance. Density functional theory analysis further suggested that the electronic structure of Ge (oP32) is sensitive to its detailed geometry and revealed that disorder in the β-tin structure leads to a higher Tc in comparison to the perfect β-tin Ge. 
    more » « less
  2. - (Ed.)
    Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. A detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented. 
    more » « less
  3. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral difference scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral difference method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available July 23, 2024
  5. - (Ed.)
    The cubic Laves phase compound CeRu2 with a Kagome substructure of Ru has been investigated to understand myriad fascinating phenomena resulting from competition among its various physical and geometric features. Such phenomena include flat bands, van Hove singularities, Dirac cones, reentrant superconductivity, magnetism, the Fulde–Ferrell–Larkin–Ovchinnikov state, valence fluctuations, time-irreversible anisotropic s-state superconductivity, etc. Extensive studies have thus been carried out since 1958 when the highly unusual coexistence of superconductivity and ferromagnetism was proposed for the mixed compounds (Ce,Gd)Ru2. Activity has accelerated in recent years due to increasing interest in topological states in superconductors. However, there has been little investigation of the mutual influence of these fascinating states. Therefore, we systematically investigated the superconductivity and possible Fermi surface topological change in CeRu2 via magnetic, resistivity, and structural measurements under pressure up to ~168 GPa. An unusual phase diagram that suggests an intriguing interplay between the compound’s superconducting order and Fermi surface topological order has been constructed. A resurgence in its superconducting transition temperature was observed above 28 GPa. Our experiments have identified a structural transition above 76 GPa and a few tantalizing phase transitions driven by high pressure. Our high-pressure results further suggest that superconductivity and Fermi surface topology in CeRu2 are strongly intertwined, 
    more » « less
  6. Abstract

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a versatile surface-sensitive technique for characterizing both hard and soft matter. Its chemical and molecular specificity, high spatial resolution, and superior sensitivity make it an ideal method for depth profiling polymeric systems, including those comprised of both inorganic and organic constituents (i.e., polymer nanocomposites, PNCs). To best utilize ToF-SIMS for characterizing PNCs, experimental conditions must be optimized to minimize challenges such as the matrix effect and charge accumulation. Toward that end, we have successfully used ToF-SIMS with a Xe+ focused ion beam to depth profile silica nanoparticles grafted with poly(methyl methacrylate) (PMMA-NP) in a poly(styrene-ran-acrylonitrile) matrix film by selecting conditions that address charge compensation and the primary incident beam angles. By tracking the sputtered Si+ species and fitting the resultant concentration profile, the diffusion coefficient of PMMA-NP was determined to be D = 2.4 × 10−14 cm2/s. This value of D lies between that measured using Rutherford backscattering spectrometry (6.4 × 10−14 cm2/s) and the value predicted by the Stokes–Einstein model (2.5 × 10−15 cm2/s). With carefully tuned experimental parameters, ToF-SIMS holds great potential for quantitatively characterizing the nanoparticles at the surfaces and interfaces within PNC materials as well as soft matter in general.

     
    more » « less
  7. Free, publicly-accessible full text available September 1, 2024
  8. The Hall Magnetohydrodynamic (MHD) equations are an extension of the standard MHD equations that include the “Hall” term from the general Ohm’s law. The Hall term decouples ion and electron motion physically on the ion inertial length scales. Implementing the Hall MHD equations in a numerical solver allows more physical simulations for plasma dynamics on length scales less than the ion inertial scale length but greater than the electron inertial length. The present effort is an important step towards producing physically correct results to important problems, such as the Geospace Environmental Modeling (GEM) Magnetic Reconnection problem. The solver that is being modified is currently capable of solving the resistive MHD equations on unstructured grids using the spectral difference scheme which is an arbitrarily high-order method that is relatively simple to parallelize. The GEM Magnetic Reconnection problem is used to evaluate whether the Hall MHD equations have been correctly implemented in the solver using the spectral difference method with divergence cleaning (SDDC) algorithm by comparing against the reconnection rates reported in the literature.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  9. - (Ed.)
    We employed high-pressure Brillouin scattering to study the pressure dependencies of acoustic modes of glycerol up to 14 GPa at 300 K. We observed longitudinal acoustic velocities and transverse acoustic velocities for the first time from 5 to 14 GPa. The results allow the determination of a complete set of elastic properties and an accurate determination of the pressure–volume (P–V) equation of state (EOS). EOS parameters, K0 = 14.9 ± 1.8 GPa and K′0 = 5.6 ± 0.5, were determined from fits to the data from ambient pressure to 14 GPa. Direct volume measurements of the P–V EOS are consistent with those determined by Brillouin scattering. A deviation from a Cauchy-like relationship for elastic properties was observed, and the pressure dependencies of the photoelastic constants and relaxation times were documented from 5 to 14 GPa. These results have broad implications for glass-forming liquids, viscoelastic theory, and mode coupling theory. 
    more » « less
  10. Free, publicly-accessible full text available May 23, 2024