skip to main content


Search for: All records

Creators/Authors contains: "Ryan, Geoffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    On 2017 August 17, Advanced LIGO and Virgo observed GW170817, the first gravitational-wave (GW) signal from a binary neutron star merger. It was followed by a short-duration gamma-ray burst, GRB 170817A, and by a non-thermal afterglow emission. In this work, a combined simultaneous fit of the electromagnetic (EM, specifically, afterglow) and GW domains is implemented, both using the posterior distribution of a GW standalone analysis as prior distribution to separately process the EM data, and fitting the EM and GW domains simultaneously. These approaches coincide mathematically, as long as the actual posterior of the GW analysis, and not an approximation, is used as prior for the EM analysis. We treat the viewing angle, θv, as shared parameter across the two domains. In the afterglow modelling with a Gaussian structured jet this parameter and the jet core angle, θc, are correlated, leading to high uncertainties on their values. The joint EM + GW analysis relaxes this degeneracy, reducing the uncertainty compared to an EM-only fit. We also apply our methodology to hypothetical GW170817-like events occurring in the next GW observing run at ∼140 and 70 Mpc. At 70 Mpc the existing EM degeneracy is broken, thanks to the inclusion of the GW domain in the analysis. At 140 Mpc, the EM-only fit cannot constrain θv nor θc because of the lack of detections in the afterglow rising phase. Folding the GW data into the analysis leads to tighter constraints on θv, still leaving θc unconstrained, requiring instruments with higher sensitivities, such as Athena.

     
    more » « less
  2. Gamma-ray bursts (GRBs) are among the brightest and most energetic events in the universe. The duration and hardness distribution of GRBs has two clusters, now understood to reflect (at least) two different progenitors. Short-hard GRBs (SGRBs; T90 <2 s) arise from compact binary mergers, while long-soft GRBs (LGRBs; T90 >2 s) have been attributed to the collapse of peculiar massive stars (collapsars). The discovery of SN 1998bw/GRB 980425 marked the first association of a LGRB with a collapsar and AT 2017gfo/GRB 170817A/GW170817 marked the first association of a SGRB with a binary neutron star merger, producing also gravitational wave (GW). Here, we present the discovery of ZTF20abwysqy (AT2020scz), a fast-fading optical transient in the Fermi Satellite and the InterPlanetary Network (IPN) localization regions of GRB 200826A; X-ray and radio emission further confirm that this is the afterglow. Follow-up imaging (at rest-frame 16.5 days) reveals excess emission above the afterglow that cannot be explained as an underlying kilonova (KN), but is consistent with being the supernova (SN). Despite the GRB duration being short (rest-frame T90 of 0.65 s), our panchromatic follow-up data confirms a collapsar origin. GRB 200826A is the shortest LGRB found with an associated collapsar; it appears to sit on the brink between a successful and a failed collapsar. Our discovery is consistent with the hypothesis that most collapsars fail to produce ultra-relativistic jets. 
    more » « less