skip to main content


Search for: All records

Creators/Authors contains: "Safonov, Boris S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the confirmation of a hot super-Neptune with an exterior Neptune companion orbiting a bright (V  = 10.1 mag) F-dwarf identified by the Transiting Exoplanet Survey Satellite (TESS). The two planets, observed in sectors 45, 46, and 48 of the TESS extended mission, are $4.74_{-0.14}^{+0.16}$ and $3.86_{-0.16}^{+0.17}$ R⊕ with $5.4588385_{-0.0000072}^{+0.0000070}$ and $17.8999_{-0.0013}^{+0.0018}$ d orbital periods, respectively. We also obtained precise space-based photometric follow-up of the system with ESA’s CHaracterising ExOplanets Satellite to constrain the radius and ephemeris of TOI-5126 b. TOI-5126 b is located in the ‘hot Neptune Desert’ and is an ideal candidate for follow-up transmission spectroscopy due to its high-predicted equilibrium temperature (Teq = ${1442}_{-40}^{+46}$ K) implying a cloud-free atmosphere. TOI-5126 c is a warm Neptune (Teq = $971_{-27}^{+31}$ K) also suitable for follow-up. Tentative transit timing variations have also been identified in analysis, suggesting the presence of at least one additional planet, however this signal may be caused by spot-crossing events, necessitating further precise photometric follow-up to confirm these signals.

     
    more » « less
  2. We report the confirmation and characterisation of TOI-1820 b, TOI-2025 b, and TOI-2158 b, three Jupiter-sized planets on short-period orbits around G-type stars detected by TESS. Through our ground-based efforts using the FIES and Tull spectrographs, we have confirmed these planets and characterised their orbits, and find periods of around 4.9 d, 8.9 d, and 8.6 d for TOI-1820 b, TOI-2025 b, and TOI-2158 b, respectively. The sizes of the planets range from 0.96 to 1.14 Jupiter radii, and their masses are in the range from 0.8 to 4.4 Jupiter masses. For two of the systems, namely TOI-2025 and TOI-2158, we see a long-term trend in the radial velocities, indicating the presence of an outer companion in each of the two systems. For TOI-2025 we furthermore find the star to be well aligned with the orbit, with a projected obliquity of 9 −31 +33 °. As these planets are all found in relatively bright systems ( V ~ 10.9–11.6 mag), they are well suited for further studies, which could help shed light on the formation and migration of hot and warm Jupiters. 
    more » « less
  3. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
  4. null (Ed.)
    We present the discovery of TOI-1518b -- an ultra-hot Jupiter orbiting a bright star $V = 8.95$. The transiting planet is confirmed using high-resolution optical transmission spectra from EXPRES. It is inflated, with $R_p = 1.875\pm0.053\,R_{\rm J}$, and exhibits several interesting properties, including a misaligned orbit (${240.34^{+0.93}_{-0.98}}$ degrees) and nearly grazing transit ($b =0.9036^{+0.0061}_{-0.0053}$). The planet orbits a fast-rotating F0 host star ($T_{\mathrm{eff}} \simeq 7300$ K) in 1.9 days and experiences intense irradiation. Notably, the TESS data show a clear secondary eclipse with a depth of $364\pm28$ ppm and a significant phase curve signal, from which we obtain a relative day-night planetary flux difference of roughly 320 ppm and a 5.2$\sigma$ detection of ellipsoidal distortion on the host star. Prompted by recent detections of atomic and ionized species in ultra-hot Jupiter atmospheres, we conduct an atmospheric cross-correlation analysis. We detect neutral iron (${5.2\sigma}$), at $K_p = 157^{+68}_{-44}$ km s$^{-1}$ and $V_{\rm sys} = -16^{+2}_{-4}$ km s$^{-1}$, adding another object to the small sample of highly irradiated gas-giant planets with Fe detections in transmission. Detections so far favor particularly inflated gas giants with radii $rsim 1.78\,R_{\rm J}$; although this may be due to observational bias. With an equilibrium temperature of $T_{\rm eq}=2492\pm38$ K and a measured dayside brightness temperature of $3237\pm59$ K (assuming zero geometric albedo), TOI-1518b is a promising candidate for future emission spectroscopy to probe for a thermal inversion. 
    more » « less
  5. Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ . 
    more » « less