skip to main content


Search for: All records

Creators/Authors contains: "Sakib, Nurruzaman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reproducible wafer-scale growth of two-dimensional (2D) materials using the Chemical Vapor Deposition (CVD) process with precise control over their properties is challenging due to a lack of understanding of the growth mechanisms spanning over several length scales and sensitivity of the synthesis to subtle changes in growth conditions. A multiscale computational framework coupling Computational Fluid Dynamics (CFD), Phase-Field (PF), and reactive Molecular Dynamics (MD) was developed – called the CPM model – and experimentally verified. Correlation between theoretical predictions and thorough experimental measurements for a Metal-Organic CVD (MOCVD)-grown WSe2model material revealed the full power of this computational approach. Large-area uniform 2D materials are synthesized via MOCVD, guided by computational analyses. The developed computational framework provides the foundation for guiding the synthesis of wafer-scale 2D materials with precise control over the coverage, morphology, and properties, a critical capability for fabricating electronic, optoelectronic, and quantum computing devices.

     
    more » « less