skip to main content


Search for: All records

Creators/Authors contains: "Salem, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The expanding-box model of the solar wind has been adopted in the literature within the context of magnetohydrodynamics, hybrid, and full particle-in-cell simulations to investigate the dynamic evolution of the solar wind. The present paper extends such a method to the framework of self-consistent quasilinear kinetic theory. It is shown that the expanding-box quasilinear methodology is largely equivalent to the inhomogeneous steady-state quasilinear model discussed earlier in the literature, but a distinction regarding the description of wave dynamics between the two approaches is also found. The expanding-box quasilinear formalism is further extended to include the effects of a spiraling solar-wind magnetic field as well as collisional age effects. The present finding shows that the expanding-box quasilinear approach and the steady-state global-kinetic models may be employed interchangeably in order to address other more complex problems associated with the solar-wind dynamics.

     
    more » « less
  2. ABSTRACT

    This paper formulates a velocity moment-based quasi-linear theory that combines the impacts of weakly unstable proton–cyclotron- (or, equivalently, electromagnetic ion cyclotron) and proton-mirror instabilities on the solar wind plasma initially characterized by an excessive perpendicular proton temperature anisotropy. The present formalism is an alternative to the existing model in that the weakly unstable modes are characterized by analytical formalism that involves the assumption of weak growth rate and/or fluid-theoretical dispersion relation, in place of numerical root-finding method based on the transcendental plasma dispersion function. This results in an efficient numerical platform for analyzing the quasi-linear development of the said instabilities. Such a formalism may be useful in the larger context of global solar wind modelling effort where an efficient calculation of self-consistent wave–particle interaction process is called for. A direct comparison with spacecraft observations of solar wind proton data distribution shows that the present weak growth rate formalism of quasi-linear calculation produces results that are consistent with the observation.

     
    more » « less