skip to main content


Search for: All records

Creators/Authors contains: "Sander, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whitehead, David (Ed.)
    Abstract Hydraulic stress in plants occurs under conditions of low water availability (soil moisture; θ) and/or high atmospheric demand for water (vapor pressure deficit; D). Different species are adapted to respond to hydraulic stress by functioning along a continuum where, on one hand, they close stomata to maintain a constant leaf water potential (ΨL) (isohydric species), and on the other hand, they allow ΨL to decline (anisohydric species). Differences in water-use along this continuum are most notable during hydrologic stress, often characterized by low θ and high D; however, θ and D are often, but not necessarily, coupled at time scales of weeks or longer, and uncertainty remains about the sensitivity of different water-use strategies to these variables. We quantified the effects of both θ and D on canopy conductance (Gc) among widely distributed canopy-dominant species along the isohydric–anisohydric spectrum growing along a hydroclimatological gradient. Tree-level Gc was estimated using hourly sap flow observations from three sites in the eastern United States: a mesic forest in western North Carolina and two xeric forests in southern Indiana and Missouri. Each site experienced at least 1 year of substantial drought conditions. Our results suggest that sensitivity of Gc to θ varies across sites and species, with Gc sensitivity being greater in dry than in wet sites, and greater for isohydric compared with anisohydric species. However, once θ limitations are accounted for, sensitivity of Gc to D remains relatively constant across sites and species. While D limitations to Gc were similar across sites and species, ranging from 16 to 34% reductions, θ limitations to Gc ranged from 0 to 40%. The similarity in species sensitivity to D is encouraging from a modeling perspective, though it implies that substantial reduction to Gc will be experienced by all species in a future characterized by higher D. 
    more » « less
  2. Abstract

    Meteorological drought indices like the Standardized Precipitation Evaporation Index (SPEI) are frequently used to diagnose “ecological drought,” despite the fact that they were not explicitly designed for this purpose. More recently developed indices like the Evaporative Stress Index (ESI), which is based on the degree of coupling between actual to potential evapotranspiration, may better capture dynamic plant response to moisture limitations. However, the skill of these indices at describing plant water stress is rarely evaluated at sub‐seasonal timescales over which drought evolves. Moreover, it remains unclear how variability in phenological timing impacts and complicates early drought detection. Here, we compared the ability of ESI and SPEI to reflect the dynamics of ecological drought in forests and grasslands, based on anomalies of Gross Primary Productivity (GPP), surface conductance (Gs, a proxy for stomatal conductance), soil moisture, and vapor pressure deficit. ESI performed better than SPEI in capturing the dynamics of GPP andGs, but still missed early ecological drought signals due to biases linked to earlier onset of spring leaf development. Thus, we developed a modified variant of the ESI () that accounts for the complicating effects of phenological shifts in leaf area index (LAI). Thedetected drought onset up to 7–10 weeks earlier than SPEI and ESI. Additionally, drought onset dates determined fromare close to (±2 weeks) the dates determined from LAI‐corrected anomalies ofGs, and GPP, as well as the onset dates of soil water deficit and atmospheric aridity.

     
    more » « less
  3. Abstract

    The coordination of plant leaf water potential (ΨL) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨLthan plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species,Quercus albaL.,Acer saccharumMarsh. andLiriodendron tulipiferaL., by synthesizing 1600 ΨLobservations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨLless strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age.Quercusspecies are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨLregulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought‐prone future.

     
    more » « less
  4. Abstract The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 34 cm -2 s -1 . This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb -1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment. 
    more » « less
  5. Abstract The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam. 
    more » « less
  6. Abstract The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip. 
    more » « less
  7. Abstract During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m 2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 10 15 n eq /cm 2 . The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker. 
    more » « less
  8. null (Ed.)