skip to main content


Search for: All records

Creators/Authors contains: "Sargent, Edward H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4with other metals.

     
    more » « less
  2. The nitrogen cycle needed for scaled agriculture relies on energy- and carbon-intensive processes and generates nitrate-containing wastewater. Here we focus on an alternative approach—the electrified co-electrolysis of nitrate and CO2 to synthesize urea. When this is applied to industrial wastewater or agricultural runoff, the approach has the potential to enable low-carbon-intensity urea production while simultaneously providing wastewater denitrification. We report a strategy that increases selectivity to urea using a hybrid catalyst: two classes of site independently stabilize the key intermediates needed in urea formation, *CO2NO2 and *COOHNH2, via a relay catalysis mechanism. A Faradaic efficiency of 75% at wastewater-level nitrate concentrations (1,000 ppm NO3− [N]) is achieved on Zn/Cu catalysts. The resultant catalysts show a urea production rate of 16 µmol h−1 cm−2. Life-cycle assessment indicates greenhouse gas emissions of 0.28 kg CO2e per kg urea for the electrochemical route, compared to 1.8 kg CO2e kg−1 for the present-day route. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi–steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hourT85at maximum power point under 1-sun illumination. 
    more » « less
    Free, publicly-accessible full text available July 14, 2024
  4. A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Nanoscopic packing structures crucially determine the charge conduction and the consequent functionalities of organic semiconductors including bulk heterojunctions (BHJs), which are dependent on various processing parameters. Today's high‐performance colloidal quantum dot photovoltaics (CQDPVs) employ functional organic semiconductors as a hole transport layer (HTL). However, the processing of those films replicates a protocol dedicated to high‐performance organic PVs, and thus little is known about how to control the molecular packing structures to maximize the hole extraction function of the HTLs. Herein, it is uncovered that the random‐oriented, but closer‐packed BHJ crystallites, constructed by 1,2‐dichlorobenzene (o‐DCB) as a solvent, allow exceptional charge conduction vertically across the film and restrict diffusion‐driven charge transfer process, enabling ultrafast hole funneling from CQD to BHJ to be extracted. As a result, a power conversion efficiency of 13.66% with high photocurrent >34 mA cm−2is achieved by employingo‐DCB‐processed BHJ HTL, far exceeding the performance of the CQDPV solely employing neat polymer HTL. A charge conduction mechanism associated with the BHJ HTL structure suppressing the bimolecular recombination is proposed. This works not only suggests key principles to control the packing structures of organic HTLs but also opens a new avenue to boost optoelectronic performance.

     
    more » « less