skip to main content


Search for: All records

Creators/Authors contains: "Sarupria, Sapna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Molecular simulations are a powerful tool in the study of crystallization and polymorphic transitions yielding detailed information of transformation mechanisms with high spatiotemporal resolution. How- ever, characterizing various crystalline and amorphous phases as well as sampling nucleation events and structural transitions remain extremely challenging tasks. The integration of machine learning with molecular simulations has the potential of unprecedented advancement in the area of crystal nucleation and growth. In this article, we discuss recent progress in the analysis and sampling of structural trans- formations aided by machine learning and the resulting potential future directions opening in this area. 
    more » « less
  2. Tweetable abstract How can we optimize the design of enzyme-responsive polymersomes to better treat disease? In this perspective, three common modes of enzymatic action in these nanoparticles are identified. 
    more » « less
  3. null (Ed.)
  4. Path sampling approaches have become invaluable tools to explore the mechanisms and dynamics of the so-called rare events that are characterized by transitions between metastable states separated by sizable free energy barriers. Their practical application, in particular to ever more complex molecular systems, is, however, not entirely trivial. Focusing on replica exchange transition interface sampling (RETIS) and forward flux sampling (FFS), we discuss a range of analysis tools that can be used to assess the quality and convergence of such simulations, which is crucial to obtain reliable results. The basic ideas of a step-wise evaluation are exemplified for the study of nucleation in several systems with different complexities, providing a general guide for the critical assessment of RETIS and FFS simulations.

     
    more » « less
  5. Identifying local structure in molecular simulations is of utmost importance. The most common existing approach to identify local structure is to calculate some geometrical quantity referred to as an order parameter. In simple cases order parameters are physically intuitive and trivial to develop ( e.g. , ion-pair distance), however in most cases, order parameter development becomes a much more difficult endeavor ( e.g. , crystal structure identification). Using ideas from computer vision, we adapt a specific type of neural network called a PointNet to identify local structural environments in molecular simulations. A primary challenge in applying machine learning techniques to simulation is selecting the appropriate input features. This challenge is system-specific and requires significant human input and intuition. In contrast, our approach is a generic framework that requires no system-specific feature engineering and operates on the raw output of the simulations, i.e. , atomic positions. We demonstrate the method on crystal structure identification in Lennard-Jones (four different phases), water (eight different phases), and mesophase (six different phases) systems. The method achieves as high as 99.5% accuracy in crystal structure identification. The method is applicable to heterogeneous nucleation and it can even predict the crystal phases of atoms near external interfaces. We demonstrate the versatility of our approach by using our method to identify surface hydrophobicity based solely upon positions and orientations of surrounding water molecules. Our results suggest the approach will be broadly applicable to many types of local structure in simulations. 
    more » « less