skip to main content


Search for: All records

Creators/Authors contains: "Scaife, Anna M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present detailed morphology measurements for 8.67 million galaxies in the DESI Legacy Imaging Surveys (DECaLS, MzLS, and BASS, plus DES). These are automated measurements made by deep learning models trained on Galaxy Zoo volunteer votes. Our models typically predict the fraction of volunteers selecting each answer to within 5–10 per cent for every answer to every GZ question. The models are trained on newly collected votes for DESI-LS DR8 images as well as historical votes from GZ DECaLS. We also release the newly collected votes. Extending our morphology measurements outside of the previously released DECaLS/SDSS intersection increases our sky coverage by a factor of 4 (5000–19 000 deg2) and allows for full overlap with complementary surveys including ALFALFA and MaNGA.

     
    more » « less
  2. ABSTRACT

    The reconstruction of Faraday depth structure from incomplete spectral polarization radio measurements using the RM synthesis technique is an underconstrained problem requiring additional regularization. In this paper, we present cs-romer: a novel object-oriented compressed sensing framework to reconstruct Faraday depth signals from spectropolarization radio data. Unlike previous compressed sensing applications, this framework is designed to work directly with data that are irregularly sampled in wavelength-squared space and to incorporate multiple forms of compressed sensing regularization. We demonstrate the framework using simulated data for the VLA telescope under a variety of observing conditions, and we introduce a methodology for identifying the optimal basis function for reconstruction of these data, using an approach that can also be applied to data sets from other telescopes and over different frequency ranges. In this work, we show that the delta basis function provides optimal reconstruction for VLA L-band data and we use this basis with observations of the low-mass galaxy cluster Abell 1314 in order to reconstruct the Faraday depth of its constituent cluster galaxies. We use the cs-romer framework to de-rotate the Galactic Faraday depth contribution directly from the wavelength-squared data and to handle the spectral behaviour of different radio sources in a direction-dependent manner. The results of this analysis show that individual galaxies within Abell 1314 deviate from the behaviour expected for a Faraday-thin screen such as the intra-cluster medium and instead suggest that the Faraday rotation exhibited by these galaxies is dominated by their local environments.

     
    more » « less
  3. ABSTRACT Astronomers have typically set out to solve supervised machine learning problems by creating their own representations from scratch. We show that deep learning models trained to answer every Galaxy Zoo DECaLS question learn meaningful semantic representations of galaxies that are useful for new tasks on which the models were never trained. We exploit these representations to outperform several recent approaches at practical tasks crucial for investigating large galaxy samples. The first task is identifying galaxies of similar morphology to a query galaxy. Given a single galaxy assigned a free text tag by humans (e.g. ‘#diffuse’), we can find galaxies matching that tag for most tags. The second task is identifying the most interesting anomalies to a particular researcher. Our approach is 100 per cent accurate at identifying the most interesting 100 anomalies (as judged by Galaxy Zoo 2 volunteers). The third task is adapting a model to solve a new task using only a small number of newly labelled galaxies. Models fine-tuned from our representation are better able to identify ring galaxies than models fine-tuned from terrestrial images (ImageNet) or trained from scratch. We solve each task with very few new labels; either one (for the similarity search) or several hundred (for anomaly detection or fine-tuning). This challenges the longstanding view that deep supervised methods require new large labelled data sets for practical use in astronomy. To help the community benefit from our pretrained models, we release our fine-tuning code zoobot. Zoobot is accessible to researchers with no prior experience in deep learning. 
    more » « less