skip to main content


Search for: All records

Creators/Authors contains: "Schaefer, Gail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rapid rotation and nonradial pulsations enable Be stars to build decretion disks, where the characteristic line emission forms. A major but unconstrained fraction of Be stars owe their rapid rotation to mass and angular momentum transfer in a binary. The faint, stripped companions can be helium-burning subdwarf OB-type stars (sdOBs), white dwarfs (WDs), or neutron stars. We present optical/near-infrared Center for High Angular Resolution Astronomy (CHARA) interferometry of 37 Be stars selected for spectroscopic indications of low-mass companions. From multiepochH- and/orK-band interferometry plus radial velocities and parallaxes collected elsewhere, we constructed 3D orbits and derived flux ratios and absolute dynamical masses of both components for six objects, quadrupling the number of anchor points for evolutionary models. In addition, a new wider companion was identified for the known Be + sdO binary 59 Cyg, while auxiliary Very Large Telescope Interferometer/GRAVITY spectrointerferometry confirmed circumstellar matter around the sdO companion to HR 2142. On the other hand, we failed to detect any companion to the six Be stars withγCas–like X-ray emission, with sdOB and main-sequence companions of the expected spectroscopic mass being ruled out for the X-ray-prototypical starsγCas andπAqr, leaving elusive WDs as the most likely companions, as well as a likely explanation of the X-rays. No low-mass main-sequence close companions were identified for the other stars.

     
    more » « less
  2. Context.T Tauri stars are low-mass young stars whose disks provide the setting for planet formation, which is one of the most fundamental processes in astronomy. Yet the mechanisms of this are still poorly understood. SU Aurigae is a widely studied T Tauri star and here we present original state-of-the-art interferometric observations with better uv and baseline coverage than previous studies.

    Aims.We aim to investigate the characteristics of the circumstellar material around SU Aur, and constrain the disk geometry, composition and inner dust rim structure.

    Methods.The MIRC-X instrument at CHARA is a six-telescope optical beam combiner offering baselines up to 331 m. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrained the physical parameters of the disk.

    Results.Image reconstruction reveals a highly inclined disk with a slight asymmetry consistent with inclination effects obscuring the inner disk rim through absorption of incident star light on the near side and thermal re-emission/scattering of the far side. Geometric models find that the underlying brightness distribution is best modelled as a Gaussian with a Full-Width Half-Maximum of 1.53 ± 0.01 mas at an inclination of 56.9 ± 0.4° and a minor axis position angle of 55.9 ± 0.5°. Radiative transfer modelling shows a flared disk with an inner radius at 0.16 au which implies a grain size of 0.14 μm assuming astronomical silicates and a scale height of 9.0 au at 100 au. In agreement with the literature, only the dusty disk wind successfully accounts for the near infrared excess by introducing dust above the mid-plane.

    Conclusions.Our results confirm and provide better constraints than previous inner disk studies of SU Aurigae. We confirm the presence of a dusty disk wind in the cicumstellar environment, the strength of which is enhanced by a late infall event which also causes very strong misalignments between the inner and outer disks.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. ABSTRACT

    We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.

     
    more » « less
  4. The majority of Sun-like stars form with binary companions, and their dynamical impact profoundly shapes the formation and survival of their planetary systems. Demographic studies have shown that close binaries (a < 100 au) have suppressed planet-occurrence rates compared to single stars, yet a substantial minority of planets do form and survive at all binary separations. To identify the conditions that foster planet formation in binary systems, we have obtained high-angular-resolution, mm interferometry for a sample of disk-bearing binary systems with known orbital solutions. In this poster, we present the case study of a young binary system, FO Tau (a ~ 22 au). Our ALMA observations resolve dust continuum (1.3 mm) and gas (CO J=2-1) from each circumstellar disk allowing us to trace the dynamical interaction between the binary orbit and the planet-forming reservoir. With these data we determine individual disk orientations and masses, while placing these measurements in the context of a new binary orbital solution. Our findings suggest that the FO Tau system is relatively placid, with observations consistent with alignment between the disks and the binary orbital plane. We compare these findings to models of binary formation and evolution, and their predictions for disk retention and planet formation. 
    more » « less
  5. Abstract

    We present measurements of the interferometrically resolved binary star system 12 Com and the single giant star 31 Com in the cluster Coma Berenices. 12 Com is a double-lined spectroscopic binary system consisting of a G7 giant and an A3 dwarf at the cluster turnoff. Using an extensive radial velocity data set and interferometric measurements from the Palomar Testbed Interferometer and the Center for High Angular Resolution Astronomy array, we measured massesM1= 2.64 ± 0.07MandM2= 2.10 ± 0.03M. Interferometry also allows us to resolve the giant and measure its size asR1= 9.12 ± 0.12 ± 0.01R. With the measured masses and radii, we find an age of 533 ± 41 ± 42 Myr. For comparison, we measure the radius of 31 Com to be 8.36 ± 0.15R. Based on the photometry and radius measurements, 12 Com A is likely the most evolved bright star in the cluster, large enough to be in the red giant phase, but too small to have core helium burning. Simultaneous knowledge of 12 Com A’s mass and photometry puts strong constraints on convective core overshooting during the main-sequence phase, which in turn reduces systematic uncertainties in the age. Increased precision in measuring this system also improves our knowledge of the progenitor of the cluster white dwarf WD1216+260.

     
    more » « less
  6. Abstract We present preliminary results from our long-baseline interferometry (LBI) survey to constrain the multiplicity properties of intermediate-mass A-type stars within 80 pc. Previous multiplicity studies of nearby stars exhibit orbital separation distributions well fitted with a lognormal with peaks >15 au, increasing with primary mass. The A-star multiplicity survey of De Rosa et al., sensitive beyond 30 au but incomplete below 100 au, found a lognormal peak around 390 au. Radial velocity surveys of slowly rotating, chemically peculiar Am stars identified a significant number of very close companions with periods ≤5 days, ∼0.1 au, a result similar to surveys of O- and B-type primaries. With the improved performance of LBI techniques, we can probe these close separations for normal A-type stars where other surveys are incomplete. Our initial sample consists of 27 A-type primaries with estimated masses between 1.44 and 2.49 M ⊙ and ages 10–790 Myr, which we observed with the MIRC-X instrument at the CHARA Array. We use the open-source software CANDID to detect five companions, three of which are new, and derive a companion frequency of 0.19 − 0.06 + 0.11 over mass ratios of 0.25–1.0 and projected separations of 0.288–5.481 au. We find a probability of 10 −6 that our results are consistent with extrapolations based on previous models of the A-star companion population over the mass ratios and separations sampled. Our results show the need to explore these very close separations to inform our understanding of stellar formation and evolution processes. 
    more » « less
  7. Abstract The nuclear region of Type 1 active galactic nuclei (AGNs) has only been partially resolved so far in the near-infrared (IR), where we expect to see the dust sublimation region and the nucleus directly without obscuration. Here, we present the near-IR interferometric observation of the brightest Type 1 AGN NGC 4151 at long baselines of ∼250 m using the CHARA Array, reaching structures at hundred microarcsecond scales. The squared visibilities decrease down to as low as ∼0.25, definitely showing that the structure is resolved. Furthermore, combining with the previous visibility measurements at shorter baselines but at different position angles, we show that the structure is elongated perpendicular to the polar axis of the nucleus, as defined by optical polarization and a linear radio jet. A thin-ring fit gives a minor/major axis ratio of ∼0.7 at a radius ∼0.5 mas (∼0.03 pc). This is consistent with the case where the sublimating dust grains are distributed preferentially in the equatorial plane in a ring-like geometry, viewed at an inclination angle of ∼40°. The recent mid-IR interferometric finding of polar-elongated geometry at a pc scale, together with a larger-scale polar outflow as spectrally resolved by the Hubble Space Telescope, would generally suggest a dusty, conical and hollow outflow being launched, presumably in the dust sublimation region. This might potentially lead to a polar-elongated morphology in the near-IR, as opposed to the results here. We discuss a possible scenario where an episodic, one-off anisotropic acceleration formed a polar-fast and equatorially slow velocity distribution, having led to an effectively flaring geometry as we observe. 
    more » « less
  8. Abstract

    The cool hypergiant star RW Cephei is currently in a deep photometric minimum that began several years ago. This event bears a strong similarity to the Great Dimming of the red supergiant Betelgeuse that occurred in 2019–2020. We present the first resolved images of RW Cephei that we obtained with the CHARA Array interferometer. The angular diameter and Gaia distance estimates indicate a stellar radius of 900–1760R, which makes RW Cephei one of the largest stars known in the Milky Way. The reconstructed, near-infrared images show a striking asymmetry in the disk illumination with a bright patch offset from the center and a darker zone to the west. The imaging results depend on assumptions made about the extended flux, and we present two cases with and without allowing extended emission. We also present a recent near-infrared spectrum of RW Cep that demonstrates that the fading is much larger at visual wavelengths compared to that at near-infrared wavelengths as expected for extinction by dust. We suggest that the star’s dimming is the result of a recent surface mass ejection event that created a dust cloud that now partially blocks the stellar photosphere.

     
    more » « less
  9. Abstract

    To accurately characterize the planets a star may be hosting, stellar parameters must first be well determined.τCeti is a nearby solar analog and often a target for exoplanet searches. Uncertainties in the observed rotational velocities have made constrainingτCeti’s inclination difficult. For planet candidates from radial velocity (RV) observations, this leads to substantial uncertainties in the planetary masses, as only the minimum mass (msini) can be constrained with RV. In this paper, we used new long-baseline optical interferometric data from the CHARA Array with the MIRC-X beam combiner and extreme precision spectroscopic data from the Lowell Discovery Telescope with EXPRES to improve constraints on the stellar parameters ofτCeti. Additional archival data were obtained from a Tennessee State University Automatic Photometric Telescope and the Mount Wilson Observatory HK project. These new and archival data sets led to improved stellar parameter determinations, including a limb-darkened angular diameter of 2.019 ± 0.012 mas and rotation period of 46 ± 4 days. By combining parameters from our data sets, we obtained an estimate for the stellar inclination of 7° ± 7°. This nearly pole-on orientation has implications for the previously reported exoplanets. An analysis of the system dynamics suggests that the planetary architecture described by Feng et al. may not retain long-term stability for low orbital inclinations. Additionally, the inclination ofτCeti reveals a misalignment between the inclinations of the stellar rotation axis and the previously measured debris disk rotation axis (idisk= 35° ± 10°).

     
    more » « less
  10. Free, publicly-accessible full text available April 1, 2024