skip to main content


Search for: All records

Creators/Authors contains: "Schianchi, Federico"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Over the past 3 yr, the fading non-thermal emission from the GW170817 remained generally consistent with the afterglow powered by synchrotron radiation produced by the interaction of the structured jet with the ambient medium. Recent observations by Hajela et al. indicate the change in temporal and spectral behaviour in the X-ray band. We show that the new observations are compatible with the emergence of a new component due to non-thermal emission from the fast tail of the dynamical ejecta of ab-initio binary neutron star merger simulations. This provides a new avenue to constrain binary parameters. Specifically, we find that equal mass models with soft equations of state (EOSs) and high-mass ratio models with stiff EOSs are disfavoured as they typically predict afterglows that peak too early to explain the recent observations. Moderate stiffness and mass ratio models, instead, tend to be in good overall agreement with the data. 
    more » « less
  2. Abstract

    We present fitting formulae for the dynamical ejecta properties and remnant disk masses from the largest to date sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state (EOS) and neutrino transport as well as other results with polytropic EOS available in the literature. Our analysis indicates that the broad features of the dynamical ejecta and disk properties can be captured by fitting expressions, that depend on mass ratio and reduced tidal parameter. The comparative analysis of literature data shows that microphysics and neutrino absorption have a significant impact on the dynamical ejecta properties. Microphysical nuclear EOS lead to average velocities smaller than polytropic EOS, while including neutrino absorption results in larger average ejecta masses and electron fractions. Hence, microphysics and neutrino transport are necessary to obtain quantitative models of the ejecta in terms of the binary parameters.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Searches for gravitational-wave counterparts have been going in earnest since GW170817 and the discovery of AT2017gfo. Since then, the lack of detection of other optical counterparts connected to binary neutron star or black hole–neutron star candidates has highlighted the need for a better discrimination criterion to support this effort. At the moment, low-latency gravitational-wave alerts contain preliminary information about binary properties and hence whether a detected binary might have an electromagnetic counterpart. The current alert method is a classifier that estimates the probability that there is a debris disc outside the black hole created during the merger as well as the probability of a signal being a binary neutron star, a black hole–neutron star, a binary black hole, or of terrestrial origin. In this work, we expand upon this approach to both predict the ejecta properties and provide contours of potential light curves for these events, in order to improve the follow-up observation strategy. The various sources of uncertainty are discussed, and we conclude that our ignorance about the ejecta composition and the insufficient constraint of the binary parameters by low-latency pipelines represent the main limitations. To validate the method, we test our approach on real events from the second and third Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)–Virgo observing runs. 
    more » « less
  4. null (Ed.)