skip to main content


Search for: All records

Creators/Authors contains: "Schmitt, Russell J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Melzner, Frank (Ed.)
    With marine heat waves increasing in intensity and frequency due to climate change, it is important to understand how thermal disturbances will alter coral reef ecosystems since stony corals are highly susceptible to mortality from thermally-induced, mass bleaching events. In Moorea, French Polynesia, we evaluated the response and fate of coral following a major thermal stress event in 2019 that caused a substantial amount of branching coral (predominantly Pocillopora ) to bleach and die. We investigated whether Pocillopora colonies that occurred within territorial gardens protected by the farmerfish Stegastes nigricans were less susceptible to or survived bleaching better than Pocillopora on adjacent, undefended substrate. Bleaching prevalence (proportion of the sampled colonies affected) and severity (proportion of a colony’s tissue that bleached), which were quantified for >1,100 colonies shortly after they bleached, did not differ between colonies within or outside of defended gardens. By contrast, the fates of 399 focal colonies followed for one year revealed that a bleached coral within a garden was a third less likely to suffer complete colony death and about twice as likely to recover to its pre-bleaching cover of living tissue compared to Pocillopora outside of a farmerfish garden. Our findings indicate that while residing in a farmerfish garden may not reduce the bleaching susceptibility of a coral to thermal stress, it does help buffer a bleached coral against severe outcomes. This oasis effect of farmerfish gardens, where survival and recovery of thermally-damaged corals are enhanced, is another mechanism that helps explain why large Pocillopora colonies are disproportionately more abundant in farmerfish territories than elsewhere in the lagoons of Moorea, despite gardens being relatively uncommon. As such, some farmerfishes may have an increasingly important role in maintaining the resilience of branching corals as the frequency and intensity of marine heat waves continue to increase. 
    more » « less
  2. Abstract

    Mounting evidence suggests that fishing can be a major driver of coral‐to‐macroalgae regime shifts on tropical reefs. In many small‐scale coral reef fisheries, fishers target herbivorous fishes, which can weaken coral resilience via reduced herbivory on macroalgae that then outcompete corals. Previous models that explored the effects of harvesting herbivores revealed hysteresis in the herbivory–benthic state relationship that results in bistability of coral‐ and macroalgae‐dominated states over some levels of fishing pressure, which has been supported by empirical evidence. However, past models have not accounted for the functional differences among herbivores or how fisher selectivity for different herbivore functional groups may alter the benthic dynamics and resilience. Here, we use a dynamic model that links differential fishing on two key herbivore functional groups to the outcome of competitive dynamics between coral and macroalgae. We show that reef state depends not only on the level of fishing but also on the types of herbivores targeted by fishers. Selectively fishing browsing herbivores that are capable of consuming mature macroalgae (e.g., unicornfish) increases precariousness of the coral state by moving the system close to the coral‐to‐macroalgae tipping point. By contrast, selectively harvesting grazing herbivores that are only capable of preventing macroalgae from becoming established (e.g., parrotfishes) can increase catch yields substantially more before the tipping point is reached. However, this lower precariousness with increasing fishing effort comes at the cost of increasing the range of fishing effort over which coral and macroalgae are bistable; increasing hysteresis makes a regime shift triggered by a disturbance more difficult or impractical to reverse. Our results suggest that management strategies for small‐scale coral reef fisheries should consider how functional differences among harvested herbivores coupled with fisher selectivity influence benthic dynamics in light of the trade‐off between tipping point precariousness and coral recovery dynamics following large disturbances.

     
    more » « less
  3. abstract Coastal ecosystems play a disproportionately large role in society, and climate change is altering their ecological structure and function, as well as their highly valued goods and services. In the present article, we review the results from decade-scale research on coastal ecosystems shaped by foundation species (e.g., coral reefs, kelp forests, coastal marshes, seagrass meadows, mangrove forests, barrier islands) to show how climate change is altering their ecological attributes and services. We demonstrate the value of site-based, long-term studies for quantifying the resilience of coastal systems to climate forcing, identifying thresholds that cause shifts in ecological state, and investigating the capacity of coastal ecosystems to adapt to climate change and the biological mechanisms that underlie it. We draw extensively from research conducted at coastal ecosystems studied by the US Long Term Ecological Research Network, where long-term, spatially extensive observational data are coupled with shorter-term mechanistic studies to understand the ecological consequences of climate change. 
    more » « less
  4. null (Ed.)
    Abstract A suite of processes drive variation in coral populations in space and time, yet our understanding of how variation in coral density affects coral performance is limited. Theory predicts that reductions in density can send coral populations into a predator pit, where concentrated corallivory maintains corals at low densities. In reality, how variation in coral density alters corallivory rates is poorly resolved. Here, we experimentally quantified the effects of corallivory and coral density on growth and survival of small colonies of the staghorn coral Acropora pulchra . Our findings suggest that coral density and corallivory have strong but independent effects on coral performance. In the presence of corallivores, corals suffered high but density-independent mortality. When corallivores were excluded, however, vertical extension rates of colonies increased with increasing densities. While we found no evidence for a predator pit, our results suggest that spatio-temporal variation in corallivore and coral densities can fundamentally alter population dynamics via strong effects on juvenile corals. 
    more » « less
  5. Abstract

    Surveying coastal systems to estimate distribution and abundance of fish and benthic organisms is labor‐intensive, often resulting in spatially limited data that are difficult to scale up to an entire reef or island. We developed a method that leverages the automation of a machine learning platform, CoralNet, to efficiently and cost‐effectively allow a single observer to simultaneously generate georeferenced data on abundances of fish and benthic taxa over large areas in shallow coastal environments. Briefly, a researcher conducts a fish survey while snorkeling on the surface and towing a float equipped with a handheld GPS and a downward‐facing GoPro, passively taking ~ 10 photographs per meter of benthos. Photographs and surveys are later georeferenced and photographs are automatically annotated by CoralNet. We found that this method provides similar biomass and density values for common fishes as traditional scuba‐based fish counts on fixed transects, with the advantage of covering a larger area. Our CoralNet validation determined that while photographs automatically annotated by CoralNet are less accurate than photographs annotated by humans at the level of a single image, the automated approach provides comparable or better estimations of the percent cover of the benthic substrates at the level of a minute of survey (~ 50 m2of reef) due to the volume of photographs that can be automatically annotated, providing greater spatial coverage of the site. This method can be used in a variety of shallow systems and is particularly advantageous when spatially explicit data or surveys of large spatial extents are necessary.

     
    more » « less
  6. Abstract

    Standing dead structures of habitat‐forming organisms (e.g., dead trees, coral skeletons, oyster shells) killed by a disturbance are material legacies that can affect ecosystem recovery processes. Many ecosystems are subject to different types of disturbance that either remove biogenic structures or leave them intact. Here we used a mathematical model to quantify how the resilience of coral reef ecosystems may be differentially affected following structure‐removing and structure‐retaining disturbance events, focusing in particular on the potential for regime shifts from coral to macroalgae. We found that dead coral skeletons could substantially diminish coral resilience if they provided macroalgae refuge from herbivory, a key feedback associated with the recovery of coral populations. Our model shows that the material legacy of dead skeletons broadens the range of herbivore biomass over which coral and macroalgae states are bistable. Hence, material legacies can alter resilience by modifying the underlying relationship between a system driver (herbivory) and a state variable (coral cover).

     
    more » « less