skip to main content


Search for: All records

Creators/Authors contains: "Schneider, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recently, the region surrounding eHWC J1842−035 has been studied extensively by γ-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842−035 region. During the search, we found three sources in the region, namely, HAWC J1844−034, HAWC J1843−032, and HAWC J1846−025. We have identified HAWC J1844−034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844−034, and by comparing with the observational results from other experiments, we have identified HESS J1843−033, LHAASO J1843−0338, and TASG J1844−038 as very-high-energy γ-ray sources with a matching origin. Also, we present and use the multiwavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region in which PSR J1844−0346 is found to be the most likely candidate due to its proximity to HAWC J1844−034 and the computed energy budget. We have also found SNR G28.6−0.1 as a potential counterpart source of HAWC J1844−034 for which both leptonic and hadronic scenarios are feasible.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Today’s STEM classrooms have expanded the domain of computer science education from a basic two-toned terminal screen to now include helpful Integrated Development Environments(IDE) (BlueJ, Eclipse), block-based programming (MIT Scratch, Greenfoot), and even physical computing with embedded systems (Arduino, LEGO Mindstorm). But no matter which environment a student starts programming in, all students will eventually need help in finding and fixing bugs in their code. While the helpful IDE’s have debugger tools built in (breakpoints for pausing your program, ways to view/modify variable values, and "stepping" through code execution), in many of the other programming environments, students are limited to using print statements to try and "see" what is happening inside their program. Most students who learn to write code for Arduino microcontrollers will start within the Arduino IDE, but the official Arduino IDE does not currently provide any debugging tools. Instead, a student would have to move on to a professional IDE such as Atmel Studio or acquire a hardware debugger in order to add breakpoints or view their program’s variables. But each of these options has a steep learning curve, additional costs, and can require complex configurations. Based on research of student debugging practices[3, 7] and our own classroom observations, we have developed an Arduino software library, called Arduino Debugger, which provides some of these debugging tools (ex. breakpoints) while staying within the official Arduino IDE. This work continues a previous library, (redacted), which focused on features specific to e-textiles development boards. The Arduino Debugger library has been modified to support not only e-textile boards (Lilypad, Adafruit Circuit Playground) but most AVR and ARM based Arduino boards.We are also in the process of testing a set of Debugging Code Templates to see how they might increase student adoption of debugging tools. 
    more » « less
  3. The e-textile landscape has enabled creators to combine textile materiality with electronic capability. However, the tools that e-textile creators use have been adapted from traditional textile or hardware tools. This puts creators at a disadvantage, as e-textile projects present new and unique challenges that currently can only be addressed using a non-specialized toolset. This paper introduces the first iteration of a wearable e-textile debugging tool to assist novice engineers in problem solving e-textile circuitry errors. These errors are often only detected after the project is fully built and are resolved only by disassembling the circuit. Our tool actively monitors the continuity of the conductive thread as the user stitches, which enables the user to identify and correct circuitry errors as they create their project. 
    more » « less
  4. In early 2020, an international team set out to investigate trade wind cumulus and their coupling to the large-scale circulation through the field campaign EUREC4A: ElUcidating the RolE of Clouds‐Circulation Coupling in ClimAte. Focused on the western tropical Atlantic near Barbados, EUREC4A deployed a number of innovative measurement strategies, including a large network of water isotopic collections, to study the tropical shallow convective environment. The goal of the isotopic measurements was to elucidate processes that regulate the hydroclimate state – for example, by identifying moisture sources, quantifying mixing between atmospheric layers, characterizing the microphysics that influence the formation and persistence of clouds and precipitation, and providing an extra constraint in the evaluation of numerical simulations. During EUREC4A, researchers deployed seven water vapor isotopic analyzers on two aircraft, on three ships, and at the Barbados Cloud Observatory (BCO). 
    more » « less
  5. Abstract Extended very-high-energy (VHE; 0.1–100 TeV) γ -ray emission has been observed around several middle-aged pulsars and referred to as “TeV halos.” Their formation mechanism remains under debate. It is also unknown whether they are ubiquitous or related to a certain subgroup of pulsars. With 2321 days of observation, the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory detected VHE γ -ray emission at the location of the radio-quiet pulsar PSR J0359+5414 with >6 σ significance. By performing likelihood tests with different spectral and spatial models and comparing the TeV spectrum with multiwavelength observations of nearby sources, we show that this excess is consistent with a TeV halo associated with PSR J0359+5414, though future observation of HAWC and multiwavelength follow-ups are needed to confirm this nature. This new halo candidate is located in a noncrowded region in the outer galaxy. It shares similar properties to the other halos but its pulsar is younger and radio-quiet. Our observation implies that TeV halos could commonly exist around pulsars and their formation does not depend on the configuration of the pulsar magnetosphere. 
    more » « less
  6. Free, publicly-accessible full text available July 1, 2024
  7. Abstract The latest High Altitude Water Cherenkov (HAWC) point-like source catalog up to 56 TeV reported the detection of two sources in the region of the Galactic plane at galactic longitude 52° < ℓ < 55°, 3HWC J1930+188 and 3HWC J1928+178. The first one is associated with a known TeV source, the supernova remnant SNR G054.1+00.3. It was discovered by one of the currently operating Imaging Atmospheric Cherenkov Telescope (IACT), the Very Energetic Radiation Imaging Telescope Array System (VERITAS), detected by the High Energy Stereoscopic System (H.E.S.S), and identified as a composite SNR. However, the source 3HWC J1928+178, discovered by HAWC and coincident with the pulsar PSR J1928+1746, was not detected by any IACT despite their long exposure on the region, until a recent new analysis of H.E.S.S. data was able to confirm it. Moreover, no X-ray counterpart has been detected from this pulsar. We present a multicomponent fit of this region using the latest HAWC data. This reveals an additional new source, HAWC J1932+192, which is potentially associated with the pulsar PSR J1932+1916, whose γ -ray emission could come from the acceleration of particles in its pulsar wind nebula. In the case of 3HWC J1928+178, several possible explanations are explored, in an attempt to unveil the origins of the very-high-energy γ -ray emission. 
    more » « less