skip to main content


Search for: All records

Creators/Authors contains: "Schuettemeyer, Dirk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. We use the CloudSat 2006–2016 data record to estimate snowfall over theGreenland Ice Sheet (GrIS). We first evaluate CloudSat snowfall retrievalswith respect to remaining ground-clutter issues. Comparing CloudSatobservations to the GrIS topography (obtained from airborne altimetrymeasurements during IceBridge) we find that at the edges of the GrISspurious high-snowfall retrievals caused by ground clutter occasionallyaffect the operational snowfall product. After correcting for this effect,the height of the lowest valid CloudSat observation is about 1200 mabove the local topography as defined by IceBridge. We then use ground-based millimeter wavelength cloud radar (MMCR) observations obtained from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Greenland (ICECAPS) experiment to devise a simple,empirical correction to account for precipitation processes occurringbetween the height of the observed CloudSat reflectivities and the snowfallnear the surface. Using the height-corrected, clutter-cleared CloudSatreflectivities we next evaluate various ZS relationships in terms ofsnowfall accumulation at Summit through comparison with weekly stake fieldobservations of snow accumulation available since 2007. Using a set of threeZS relationships that best agree with the observed accumulation at Summit,we then calculate the annual cycle snowfall over the entire GrIS as well asover different drainage areas and compare the derived mean values and annualcycles of snowfall to ERA-Interim reanalysis. We find the annual meansnowfall over the GrIS inferred from CloudSat to be 34±7.5 cm yr−1liquid equivalent (where the uncertainty is determined by the range invalues between the three different ZS relationships used). In comparison,the ERA-Interim reanalysis product only yields 30 cm yr−1 liquid equivalentsnowfall, where the majority of the underestimation in the reanalysisappears to occur in the summer months over the higher GrIS and appears to berelated to shallow precipitation events. Comparing all available estimatesof snowfall accumulation at Summit Station, we find the annually averagedliquid equivalent snowfall from the stake field to be between 20 and 24 cm yr−1, depending on the assumed snowpack density and from CloudSat 23±4.5 cm yr−1. The annual cycle at Summit is generally similar betweenall data sources, with the exception of ERA-Interim reanalysis, which showsthe aforementioned underestimation during summer months.

     
    more » « less