skip to main content


Search for: All records

Creators/Authors contains: "Schulman, L. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Belkin, M ; Kpotufe, S (Ed.)
    We give an algorithm for source identification of a mixture of k product distributions on n bits. This is a fundamental problem in machine learning with many applications. Our algorithm identifies the source parameters of an identifiable mixture, given, as input, approximate values of multilinear moments (derived, for instance, from a sufficiently large sample), using 2^O(k^2) n^O(k) arithmetic operations. Our result is the first explicit bound on the computational complexity of source identification of such mixtures. The running time improves previous results by Feldman, O’Donnell, and Servedio (FOCS 2005) and Chen and Moitra (STOC 2019) that guaranteed only learning the mixture (without parametric identification of the source). Our analysis gives a quantitative version of a qualitative characterization of identifiable sources that is due to Tahmasebi, Motahari, and Maddah-Ali (ISIT 2018). 
    more » « less
  2. de Campos, C. ; Maathuis, M. H. (Ed.)
    An important achievement in the field of causal inference was a complete characterization of when a causal effect, in a system modeled by a causal graph, can be determined uniquely from purely observational data. The identification algorithms resulting from this work produce exact symbolic expressions for causal effects, in terms of the observational probabilities. More recent work has looked at the numerical properties of these expressions, in particular using the classical notion of the condition number. In its classical interpretation, the condition number quantifies the sensitivity of the output values of the expressions to small numerical perturbations in the input observational probabilities. In the context of causal identification, the condition number has also been shown to be related to the effect of certain kinds of uncertainties in the structure of the causal graphical model. In this paper, we first give an upper bound on the condition number for the interesting case of causal graphical models with small “confounded components”. We then develop a tight characterization of the condition number of any given causal identification problem. Finally, we use our tight characterization to give a specific example where the condition number can be much lower than that obtained via generic bounds on the condition number, and to show that even “equivalent” expressions for causal identification can behave very differently with respect to their numerical stability properties. 
    more » « less
  3. An important achievement in the field of causal inference was a complete characterization of when a causal effect, in a system modeled by a causal graph, can be determined uniquely from purely observational data. The identification algorithms resulting from this work produce exact symbolic expressions for causal effects, in terms of the observational probabilities. More recent work has looked at the numerical properties of these expressions, in particular using the classical notion of the condition number. In its classical interpretation, the condition number quantifies the sensitivity of the output values of the expressions to small numerical perturbations in the input observational probabilities. In the context of causal identification, the condition number has also been shown to be related to the effect of certain kinds of uncertainties in the structure of the causal graphical model. In this paper, we first give an upper bound on the condition number for the interesting case of causal graphical models with small “confounded components”. We then develop a tight characterization of the condition number of any given causal identification problem. Finally, we use our tight characterization to give a specific example where the condition number can be much lower than that obtained via generic bounds on the condition number, and to show that even “equivalent” expressions for causal identification can behave very differently with respect to their numerical stability properties. 
    more » « less