skip to main content


Search for: All records

Creators/Authors contains: "Schulz, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Modern CAD tools represent 3D designs not only as geometry, but also as a program composed of geometric operations, each of which depends on a set of parameters. Program representations enable meaningful and controlled shape variations via parameter changes. However, achieving desired modifications solely through parameter editing is challenging when CAD models have not been explicitly authored to expose select degrees of freedom in advance. We introduce a novel bidirectional editing system for 3D CAD programs. In addition to editing the CAD program, users can directly manipulate 3D geometry and our system infers parameter updates to keep both representations in sync. We formulate inverse edits as a set of constrained optimization objectives, returning plausible updates to program parameters that both match user intent and maintain program validity. Our approach implements an automatically differentiable domain‐specific language for CAD programs, providing derivatives for this optimization to be performed quickly on any expressed program. Our system enables rapid, interactive exploration of a constrained 3D design space by allowing users to manipulate the program and geometry interchangeably during design iteration. While our approach is not designed to optimize across changes in geometric topology, we show it is expressive and performant enough for users to produce a diverse set of design variants, even when the CAD program contains a relatively large number of parameters. 
    more » « less
  2. null (Ed.)
  3. Knot and link diagrams are projections of one or more 3-dimensional simple closed curves into lR2, such that no more than two points project to the same point in lR2. These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth curves in lR3, so their projections should be smooth curves in lR2 with good continuity and large crossing angles: exactly the properties of Lombardi graph drawings (defned by circular-arc edges and perfect angular resolution). We show that several knots do not allow crossing-minimal plane Lombardi drawings. On the other hand, we identify a large class of 4-regular plane multigraphs that do have plane Lombardi drawings. We then study two relaxations of Lombardi drawings and show that every knot admits a crossing-minimal plane 2-Lombardi drawing (where edges are composed of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as a plane Lombardi drawing when relaxing the angular resolution requirement by an arbitrary small angular offset ε, while maintaining a 180◦ angle between opposite edges. 
    more » « less
  4. Abstract We present a measurement of the cosmic-ray spectrum above 100 PeV using the part of the surface detector of the Pierre Auger Observatory that has a spacing of 750 m. An inflection of the spectrum is observed, confirming the presence of the so-called second-knee feature. The spectrum is then combined with that of the 1500 m array to produce a single measurement of the flux, linking this spectral feature with the three additional breaks at the highest energies. The combined spectrum, with an energy scale set calorimetrically via fluorescence telescopes and using a single detector type, results in the most statistically and systematically precise measurement of spectral breaks yet obtained. These measurements are critical for furthering our understanding of the highest energy cosmic rays. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)