skip to main content


Search for: All records

Creators/Authors contains: "Schwarz, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to create professional development experiences, curriculum materials, and policies that support elementary school teachers to embed computational thinking (CT) in their teaching, researchers and teacher educators must under- stand ways teachers see CT as connecting to their classroom practices. Taking the viewpoint that teachers’ initial ideas about CT can serve as useful resources on which to build ed- ucational experiences, we interviewed 12 elementary school teachers to probe their understanding of six components of CT (abstraction, algorithmic thinking, automation, debug- ging, decomposition, and generalization) and how those com- ponents relate to their math and science teaching. Results suggested that teachers saw stronger connections between CT and their mathematics instruction than between CT and their science instruction. We also found that teachers draw upon their existing knowledge of CT-related terminology to make connections to their math and science instruction that could be leveraged in professional development. Teachers were, however, concerned about bringing CT into teaching due to limited class time and the difficulties of addressing high level CT in developmentally appropriate ways. We discuss these results and their implications future research and the design of professional development, sharing examples of how we used teachers’ initial ideas as the foundation of a workshop introducing them to computational thinking. 
    more » « less
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  5. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  6. Free, publicly-accessible full text available July 1, 2024