skip to main content


Search for: All records

Creators/Authors contains: "Scott, Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We consider the potential for line intensity mapping (LIM) of the rotational CO(1-0), CO(2-1), and CO(3-2) transitions to detect deviations from General Relativity from 0 < z < 3 within the framework of a very general class of modified gravity models, called Horndeski’s theories. Our forecast assumes a multitracer analysis separately obtaining information from the matter power spectrum and the first two multipoles of the redshift space distortion power spectrum. To achieve ±0.1 level constraints on the slope of the kinetic gravity braiding and Planck mass evolution parameters, a mm-wave LIM experiment would need to accumulate ≈108–109 spectrometre-hours, feasible with instruments that could be deployed in the 2030s. Such a measurement would constrain the parameters of Horndeski’s theory at a level at worst competitive to and at best an order of magnitude tighter than existing constraints from the CMB and LSS. Our modelling code is publicly available.

     
    more » « less
  2. ABSTRACT

    Broad-band tomography statistically extracts the redshift distribution of frequency dependent emission from the cross-correlation of intensity maps with a reference catalog of galaxy tracers. We make forecasts for the performance of future all-sky UV experiments doing broad-band tomography. We consider the Cosmological Advanced Survey Telescope for Optical-UV Research (castor) and the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx). The dominant uncertainty is from variability in the photometric zero-point, which scales with limiting magnitude and mirror size. With this scaling and assuming a galaxy number density characteristic of future spectroscopic data sets, we find that castor measures the UV background SED 2–10 times better than existing data. The applicable redshift range will expand from the current z < 1 to z ≈ 0–3 with castor and z = 5–9 with SPHEREx. We show that castor can provide competitive constraints on the EBL monopole to those available from galaxy number counts and direct measurement techniques. At high redshift especially, these results will help understand galaxy formation and reionization. Our modelling code and chains are publicly available.

     
    more » « less
  3. Abstract

    Detecting the line-intensity mapping (LIM) signal from the galaxies of the epoch of reionization is an emerging tool to constrain their role in reionization. Ongoing and upcoming experiments target the signal fluctuations across the sky to reveal statistical and astrophysical properties of these galaxies via signal statistics, e.g. the power spectrum. Here, we revisit the [C ii]$_{158 \, \mu \text{m}}$ LIM power spectrum under non-uniform line–luminosity scatter, which has a halo-mass variation of statistical properties. Line–luminosity scatter from a cosmological hydrodynamic and radiative transfer simulation of galaxies at $z$ = 6 is considered in this study. We test the robustness of different model frameworks that interpret the impact of the line-luminosity scatter on the signal statistics. We use a simple power-law model to fit the scatter and demonstrate that the mean luminosity–halo mass correlation fit cannot preserve the mean intensity of the LIM signal (hence the clustering power spectrum) under non-uniform scatter. In our case, the mean intensity changes by ∼48 per cent compared to the mean correlation fit in contrast to the general case with semi-analytical scatter. However, we find that the prediction for the mean intensity from the most-probable fit can be modelled robustly, considering the generalized and more realistic non-uniform scatter. We also explore the possibility of diminishing luminosity bias under non-uniform scatter, affecting the clustering power spectrum, although this phenomenon might not be statistically significant. Therefore, we should adopt appropriate approaches that can consistently interpret the LIM power spectrum from observations.

     
    more » « less
  4. Abstract

    We have modeled the velocity-resolved reverberation response of the Hβbroad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the HβBLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such aslog10(FWHM/σ), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβemission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.

     
    more » « less
  5. Abstract

    We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.

     
    more » « less