skip to main content


Search for: All records

Creators/Authors contains: "Scott, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 4, 2025
  2. Abstract

    Climate models predict more frequent, prolonged, and extreme droughts in the future. Therefore, drought experiments varying in amount and duration across a range of biogeographical scenarios provide a powerful tool for estimating how drought will affect future ecosystems. Past experimental work has been focused on the manipulation of meteorological drought: Rainout shelters are used to reduce precipitation inputs into the soil. This work has been instrumental in our ability to predict the expected effects of altered rainfall. But what about the nonrainfall components of drought? We review recent literature on the co-occurring and sometimes divergent impacts of atmospheric drying and meteorological drying. We discuss how manipulating meteorological drought or rainfall alone may not predict future changes in plant productivity, composition, or species interactions that result from climate change induced droughts. We make recommendations for how to improve these experiments using manipulations of relative humidity.

     
    more » « less
  3. Abstract

    The predicted intensification of the North American Monsoon is expected to alter growing season rainfall patterns in the southwestern United States. These patterns, which have historically been characterized by frequent small rain events, are anticipated to shift towards a more extreme precipitation regime consisting of fewer, but larger rain events. Furthermore, human activities are contributing to increased atmospheric nitrogen deposition throughout this dryland region.

    Alterations in rainfall size and frequency, along with changes in nitrogen availability, are likely to have significant consequences for above‐ground net primary production (ANPP) and plant community dynamics in drylands. The conceptual bucket model predicts that a shift towards fewer, but larger rain events could promote greater rates of ANPP in these regions by maintaining soil moisture availability above drought stress thresholds for longer periods during the growing season. However, only a few short‐term studies have tested this hypothesis, and none have explored the interaction between altered rainfall patterns and nitrogen enrichment.

    To address this knowledge gap, we conducted a 14‐year rainfall addition and nitrogen fertilization experiment in a northern Chihuahuan Desert grassland to explore the long‐term impacts of changes in monsoon rainfall size and frequency, along with chronic nitrogen enrichment, on ANPP (measured as peak biomass) and plant community dynamics.

    Contrary to bucket model predictions, small frequent rain events promoted comparable rates of ANPP to large infrequent rain events in the absence of nitrogen enrichment. It was only when nitrogen limitation was alleviated that large infrequent rain events resulted in the greatest ANPP. Furthermore, we found that nitrogen enrichment had the greatest impact on plant community composition under the small frequent rainfall regime.

    Synthesis. Our long‐term field experiment highlights limitations of the bucket model by demonstrating that water and nitrogen availability sequentially limit dryland ecological processes. Specifically, our findings suggest that while water availability is the primary limiting factor for above‐ground net primary production in these ecosystems, nitrogen limitation becomes increasingly important when water is not limiting. Moreover, our findings reveal that small frequent rain events play an important but underappreciated role in driving dryland ecosystem dynamics.

     
    more » « less
  4. Doping, or incremental substitution of one element for another, is an effective way to tailor a compound’s structure as well as its physical and chemical properties. Herein, we replaced up to 30% of Ni with Co in members of the family of layered LiNiB compounds, stabilizing the high-temperature polymorph of LiNiB while the room-temperature polymorph does not form. By studying this layered boride with in situ high-temperature powder diffraction, we obtained a distorted variant of LiNi0.7Co0.3B featuring a perfect interlayer placement of [Ni0.7Co0.3B] layers on top of each other─a structural motif not seen before in other borides. Because of the Co doping, LiNi0.7Co0.3B can undergo a nearly complete topochemical Li deintercalation under ambient conditions, resulting in a metastable boride with the formula Li0.04Ni0.7Co0.3B. Heating of Li0.04Ni0.7Co0.3B in anaerobic conditions led to yet another metastable boride, Li0.01Ni0.7Co0.3B, with a CoB-type crystal structure that cannot be obtained by simple annealing of Ni, Co, and B. No significant alterations of magnetic properties were detected upon Co-doping in the temperature-independent paramagnet LiNi0.7Co0.3B or its Li-deintercalated counterparts. Finally, Li0.01Ni0.7Co0.3B stands out as an exceptional catalyst for the selective hydrogenation of the vinyl C═C bond in 3-nitrostyrene, even in the presence of other competing functional groups. This research showcases an innovative approach to heterogeneous catalyst design by meticulously synthesizing metastable compounds. 
    more » « less
    Free, publicly-accessible full text available December 20, 2024
  5. Abstract

    Stannous fluoride (SnF2) is an effective fluoride source and antimicrobial agent that is widely used in commercial toothpaste formulations. The antimicrobial activity of SnF2is partly attributed to the presence of Sn(II) ions. However, it is challenging to directly determine the Sn speciation and oxidation state within commercially available toothpaste products due to the low weight loading of SnF2(0.454 wt% SnF2, 0.34 wt% Sn) and the amorphous, semi-solid nature of the toothpaste. Here, we show that dynamic nuclear polarization (DNP) enables119Sn solid-state NMR experiments that can probe the Sn speciation within commercially available toothpaste. Solid-state NMR experiments on SnF2and SnF4show that 19F isotropic chemical shift and119Sn chemical shift anisotropy (CSA) are highly sensitive to the Sn oxidation state. DNP-enhanced119Sn magic-angle turning (MAT) 2D NMR spectra of toothpastes resolve Sn(II) and Sn(IV) by their119Sn chemical shift tensor parameters. Fits of DNP-enhanced 1D1H → 119Sn solid-state NMR spectra allow the populations of Sn(II) and Sn(IV) within the toothpastes to be estimated. This analysis reveals that three of the four commercially available toothpastes contained at least 80% Sn(II), whereas one of the toothpaste contained a significantly higher amount of Sn(IV).

     
    more » « less
  6. Free, publicly-accessible full text available November 1, 2024
  7. Free, publicly-accessible full text available July 1, 2024
  8. Abstract

    Prior investigations have attempted to characterize the longitudinal variability of the column number density ratio of atomic oxygen to molecular nitrogen (O/N2) in the context of non‐migrating tides. The retrieval of thermosphericO/N2from far ultra‐violet (FUV) emissions assumes production is due to photoelectron impact excitation on O and N2. Consequently, efforts to characterize the tidal variability inO/N2have been limited by ionospheric contamination from O+ + e radiative recombination at afternoon local times (LT) around the equatorial ionization anomaly. The retrieval ofO/N2from FUV observations by the Ionospheric Connection Explorer (ICON) provides an opportunity to address this limitation. In this work, we derive modifiedO/N2datasets to delineate the response of thermospheric composition to non‐migrating tides as a function of LT in the absence of ionospheric contamination. We assess estimates of the ionospheric contribution to 135.6 nm emission intensities based on either Global Ionospheric Specification (GIS) electron density, International Reference Ionosphere (IRI) model output, or observations from the Extreme Ultra‐Violet imager (EUV) onboard ICON during March and September equinox conditions in 2020. Our approach accounts for any biases between the ionospheric and airglow datasets. We found that the ICON‐FUV data set, corrected for ionospheric contamination based on GIS, uncovered a previously obscured diurnal eastward wavenumber 2 tide in a longitudinal wavenumber 3 pattern at March equinox in 2020. This finding demonstrates not only the necessity of correcting for ionospheric contamination of the FUV signals but also the utility of using GIS for the correction.

     
    more » « less
  9. Abstract

    Physical function decline due to aging or disease can be assessed with quantitative motion analysis, but this currently requires expensive laboratory equipment. We introduce a self-guided quantitative motion analysis of the widely used five-repetition sit-to-stand test using a smartphone. Across 35 US states, 405 participants recorded a video performing the test in their homes. We found that the quantitative movement parameters extracted from the smartphone videos were related to a diagnosis of osteoarthritis, physical and mental health, body mass index, age, and ethnicity and race. Our findings demonstrate that at-home movement analysis goes beyond established clinical metrics to provide objective and inexpensive digital outcome metrics for nationwide studies.

     
    more » « less
  10. Abstract

    Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad‐scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long‐term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one‐time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long‐term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.

     
    more » « less