skip to main content


Search for: All records

Creators/Authors contains: "Secunda, Amy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The magnetorotational instability (MRI) has been proposed as the method of angular momentum transport that enables accretion in astrophysical discs. However, for weakly ionized discs, such as protoplanetary discs, it remains unclear whether the combined non-ideal magnetohydrodynamic (MHD) effects of Ohmic resistivity, ambipolar diffusion, and the Hall effect make these discs MRI stable. While much effort has been made to simulate non-ideal MHD MRI, these simulations make simplifying assumptions and are not always in agreement with each other. Furthermore, it is difficult to directly observe the MRI astrophysically because it occurs on small scales. Here, we propose the concept of a swirling gas experiment of weakly ionized argon gas between two concentric cylinders threaded with an axial magnetic field that can be used to study non-ideal MHD MRI. For our proposed experiment, we derive the hydrodynamic equilibrium flow and a dispersion relation for MRI that includes the three non-ideal effects. We solve this dispersion relation numerically for the parameters of our proposed experiment. We find it should be possible to produce a non-ideal MRI in such an experiment because of the Hall effect, which increases the MRI growth rate when the vertical magnetic field is anti-aligned with the rotation axis. As a proof of concept, we also present experimental results for a hydrodynamic flow in an unmagnetized prototype. We find that our prototype has a small, but non-negligible, α-parameter that could serve as a baseline for comparison to our proposed magnetized experiment, which could be subject to additional turbulence from the MRI.

     
    more » « less
  2. Abstract

    We report the detection of a long-timescale negative lag, where the blue bands lag the red bands, in the nearby Seyfert 1 galaxy Fairall 9, with two independent methods. Active Galactic Nuclei (AGNs) light curves show variability over a wide range of timescales. By measuring time lags between different wavelengths, the otherwise inaccessible structure and kinematics of the accretion disk can be studied. One common approach, reverberation mapping, quantifies the continuum and line lags moving outward through the disk at the light-travel time, revealing the size and temperature profile of the disk. Inspired by numerical simulations, we expect longer lags to exist in AGN light curves that travel inward on longer timescales, tracing the accretion process itself. By analyzing AGN light curves in both temporal and frequency space, we report the detection of long-timescale lags (∼−70 days) in Fairall 9 that propagate in the opposite direction to the reverberation lag. The short continuum lag (<10 days) is also detected and is consistent with reverberation lags reported in the literature. When fitting the longer lag as a function of frequency with a model motivated by the thin disk model, we find that the disk scale height likely increases outward in the disk. This detection raises the exciting prospect of mapping accretion disk structures across a wide range of AGN parameters.

     
    more » « less
  3. ABSTRACT

    Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whether a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

     
    more » « less
  4. Abstract While most simulations of the epoch of reionization have focused on single-stellar populations in star-forming dwarf galaxies, products of binary evolution are expected to significantly contribute to emissions of hydrogen-ionizing photons. Among these products are stripped stars (or helium stars), which have their envelopes stripped from interactions with binary companions, leaving an exposed helium core. Previous work has suggested these stripped stars can dominate the Lyman Continuum (LyC) photon output of high-redshift, low-luminosity galaxies post-starburst. Other sources of hard radiation in the early universe include zero-metallicity Population iii stars, which may have similar spectral energy distribution (SED) properties to galaxies with radiation dominated by stripped-star emissions. Here, we use four metrics (the power-law exponent over wavelength intervals 240–500 Å, 600–900 Å, and 1200–2000 Å, and the ratio of total luminosity in FUV wavelengths to LyC wavelengths) to compare the SEDs of simulated galaxies with only single-stellar evolution, galaxies containing stripped stars, and galaxies containing Population iii stars, with four different initial mass functions (IMFs). We find that stripped stars significantly alter SEDs in the LyC range of galaxies at the epoch of reionization. SEDs in galaxies with stripped stars have lower power-law indices in the LyC range and lower FUV to LyC luminosity ratios. These differences in SEDs are present at all considered luminosities ( M UV > − 15 , AB system), and are most pronounced for lower-luminosity galaxies. Intrinsic SEDs as well as those with interstellar medium absorption of galaxies with stripped stars and Population iii stars are found to be distinct for all tested Population iii IMFs. 
    more » « less
  5. null (Ed.)
  6. Abstract

    High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is ≳70%. Moreover, simulations so far have yielded values offescfalling only on the lower end of the ∼10%–20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study howfescchanges when we include two different products of binary stellar evolution—stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10–200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) andfescare often out of phase by this 10–200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction () by ∼13% and ∼10%, respectively, resulting in. Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.

     
    more » « less
  7. null (Ed.)
  8. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024