skip to main content


Search for: All records

Creators/Authors contains: "Servais, Shelby"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community’s composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions. Therefore, tracking the effects of stresses on these populations in freshwater and brackish marshes is critical. The study addressed this by utilizing next generation sequencing (NGS) to construct a baseline soil microbial community. The carbon and sulfur cycles were studied by sequencing a microbial functional gene involved in each process, the mcrA and dsrA functional genes, respectively. Saline was introduced over two years to observe the taxonomic alterations that occurred after a long-term disturbance such as seawater intrusion. It was observed that saltwater dosing increased sulfite reduction in freshwater peat soils and decreased methylotrophy in brackish peat soils. These findings add to the understanding of microbiomes by demonstrating how changes in soil qualities impact communities both before and after a disturbance such as saltwater intrusion. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.

     
    more » « less