skip to main content


Search for: All records

Creators/Authors contains: "Seshia, Sanjit A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Formal verification of cyber-physical systems (CPS) is challenging because it has to consider real-time and concurrency aspects that are often absent in ordinary software. Moreover, the software in CPS is often complex and low-level, making it hard to assure that a formal model of the system used for verification is a faithful representation of the actual implementation, which can undermine the value of a verification result. To address this problem, we propose a methodology for building verifiable CPS based on the principle that a formal model of the software can be derivedautomaticallyfrom its implementation. Our approach requires that the system implementation is specified inLingua Franca(LF), a polyglot coordination language tailored for real-time, concurrent CPS, which we made amenable to the specification of safety properties via annotations in the code. The program structure and the deterministic semantics of LF enable automatic construction of formal axiomatic models directly from LF programs. The generated models are automatically checked using Bounded Model Checking (BMC) by the verification engineUclid5using theZ3SMT solver. The proposed technique enables checking a well-defined fragment of Safety Metric Temporal Logic (Safety MTL) formulas. To ensure the completeness of BMC, we present a method to derive an upper bound on the completeness threshold of an axiomatic model based on the semantics of LF. We implement our approach in the LF Verifierand evaluate it using a benchmark suite with 22 programs sampled from real-life applications and benchmarks for Erlang, Lustre, actor-oriented languages, and RTOSes. The LF Verifiercorrectly checks 21 out of 22 programs automatically.

     
    more » « less
    Free, publicly-accessible full text available October 31, 2024
  2. Machine learning and logical reasoning have been the two foundational pillars of Artificial Intelligence (AI) since its inception, and yet, until recently the interactions between these two fields have been relatively limited. Despite their individual success and largely inde- pendent development, there are new problems on the horizon that seem solvable only via a combination of ideas from these two fields of AI. These problems can be broadly char- acterized as follows: how can learning be used to make logical reasoning and synthesis/ verification engines more efficient and powerful, and in the reverse direction, how can we use reasoning to improve the accuracy, generalizability, and trustworthiness of learning. In this perspective paper, we address the above-mentioned questions with an emphasis on certain paradigmatic trends at the intersection of learning and reasoning. Our intent here is not to be a comprehensive survey of all the ways in which learning and reasoning have been combined in the past. Rather we focus on certain recent paradigms where corrective feedback loops between learning and reasoning seem to play a particularly important role. Specifically, we observe the following three trends: first, the use of learning techniques (especially, reinforcement learning) in sequencing, selecting, and initializing proof rules in solvers/provers; second, combinations of inductive learning and deductive reasoning in the context of program synthesis and verification; and third, the use of solver layers in providing corrective feedback to machine learning models in order to help improve their accuracy, generalizability, and robustness with respect to partial specifications or domain knowledge. We believe that these paradigms are likely to have significant and dramatic impact on AI and its applications for a long time to come 
    more » « less
  3. Abstract

    We propose a new probabilistic programming language for the design and analysis of cyber-physical systems, especially those based on machine learning. We consider several problems arising in the design process, including training a system to be robust to rare events, testing its performance under different conditions, and debugging failures. We show how a probabilistic programming language can help address these problems by specifying distributions encoding interesting types of inputs, then sampling these to generate specialized training and test data. More generally, such languages can be used to write environment models, an essential prerequisite to any formal analysis. In this paper, we focus on systems such as autonomous cars and robots, whose environment at any point in time is ascene, a configuration of physical objects and agents. We design a domain-specific language,Scenic, for describingscenariosthat are distributions over scenes and the behaviors of their agents over time.Sceniccombines concise, readable syntax for spatiotemporal relationships with the ability to declaratively impose hard and soft constraints over the scenario. We develop specialized techniques for sampling from the resulting distribution, taking advantage of the structure provided byScenic’s domain-specific syntax. Finally, we applyScenicin multiple case studies for training, testing, and debugging neural networks for perception both as standalone components and within the context of a full cyber-physical system.

     
    more » « less
  4. Decentralized planning for multi-agent systems, such as fleets of robots in a search-and-rescue operation, is often constrained by limitations on how agents can communicate with each other. One such limitation is the case when agents can communicate with each other only when they are in line-of-sight (LOS). Developing decentralized planning methods that guarantee safety is difficult in this case, as agents that are occluded from each other might not be able to communicate until it’s too late to avoid a safety violation. In this paper, we develop a decentralized planning method that explicitly avoids situations where lack of visibility of other agents would lead to an unsafe situation. Building on top of an existing Rapidly exploring Random Tree (RRT)-based approach, our method guarantees safety at each iteration. Simulation studies show the effectiveness of our method and compare the degradation in performance with respect to a clairvoyant decentralized planning algorithm where agents can communicate despite not being in LOS of each other. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. We propose a novel passive learning approach, TeLex, to infer signal temporal logic (STL) formulas that characterize the behavior of a dynamical system using only observed signal traces of the system. First, we present a template-driven learning approach that requires two inputs: a set of observed traces and a template STL formula. The unknown parameters in the template can include time-bounds of the temporal operators, as well as the thresholds in the inequality predicates. TeLEx finds the value of the unknown parameters such that the synthesized STL property is satisfied by all the provided traces and it is tight. This requirement of tightness is essential to generating interesting properties when only positive examples are provided and there is no option to actively query the dynamical system to discover the boundaries of legal behavior. We propose a novel quantitative semantics for satisfaction of STL properties which enables TeLEx to learn tight STL properties without multidimensional optimization. The proposed new metric is also smooth. This is critical to enable the use of gradient-based numerical optimization engines and it produces a 30x to 100x speed-up with respect to the state-of-art gradient-free optimization. Second, we present a novel technique for automatically learning the structure of the STL formula by incrementally constructing more complex formula guided by the robustness metric of subformula. We demonstrate the effectiveness of the overall approach for learning STL formulas from only positive examples on a set of synthetic and real-world benchmarks. 
    more » « less