skip to main content


Search for: All records

Creators/Authors contains: "Shan, Weitao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO. 
    more » « less
  2. Recently, graphene fibers derived from wet-spinning of graphene oxide (GO) dispersions have emerged as viable electrodes for fiber-shaped supercapacitors (FSCs) and/or batteries, wherein large surface area, high electrical conductivity, and sufficient mechanical strength/toughness are desired. However, for most fiber electrodes reported so far, compromises have to be made between energy-storage capacity and mechanical/electrical performance, whereas a graphene fiber with high capacity and sufficient toughness for direct machine weaving or knitting is yet to be developed. Inspired by the alum mordant used for natural dyes in the traditional textile dyeing industry, our research group has synthesized wet-spun GO fibers and coagulated them with different multivalent cations ( e.g. Ca 2+ , Fe 3+ , and Al 3+ ), where dramatically different fiber morphologies and properties have been observed. The first principles density functional theory has been further employed to explain the observed disparities via cation–GO binding energy calculation. When assembled into solid-state FSCs, Al 3+ -based reduced GO (rGO) fibers offer excellent stability against bending, and a specific capacitance of 148.5 mF cm −2 at 40 mV s −1 , 1.4, 4.8, and 6.8 times higher than that of the rGO fibers based on other three coagulation systems (Fe 3+ , Ca 2+ and acetic acid), respectively. The volumetric energy density of the Al 3+ -based FSC is up to 13.26 mW h cm −3 , while a high power density of 250.87 mW cm −3 is maintained. 
    more » « less
  3. Abstract

    Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.

     
    more » « less
  4. Abstract

    Carbon‐supported nitrogen‐coordinated single‐metal site catalysts (i.e., M−N−C, M: Fe, Co, or Ni) are active for the electrochemical CO2reduction reaction (CO2RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N−M bond structures and coordination is limited. Herein, we expand the coordination environments of M−N−C catalysts by designing dual‐metal active sites. The Ni‐Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N‐coordinated dual‐metal site configurations are 2N‐bridged (Fe‐Ni)N6, in which FeN4and NiN4moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual‐metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single‐metal sites (FeN4or NiN4) with improved intrinsic catalytic activity and selectivity.

     
    more » « less
  5. Abstract

    We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

     
    more » « less
  6. Abstract

    We elucidate the structural evolution of CoN4sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)‐8‐derived carbon host as an ideal model for Co2+ion adsorption. Subsequent in situ X‐ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co−OH and Co−O species into active CoN4sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four‐electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal‐induced compressive strain of Co−N bonds in CoN4active sites formed at 900 °C. Further, we developed a two‐step (i.e., Co ion doping and adsorption) Co‐N‐C catalyst with increased CoN4site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

     
    more » « less
  7. Abstract

    Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.

     
    more » « less
  8. Abstract

    Atomically dispersed FeN4active sites have exhibited exceptional catalytic activity and selectivity for the electrochemical CO2reduction reaction (CO2RR) to CO. However, the understanding behind the intrinsic and morphological factors contributing to the catalytic properties of FeN4sites is still lacking. By using a Fe‐N‐C model catalyst derived from the ZIF‐8, we deconvoluted three key morphological and structural elements of FeN4sites, including particle sizes of catalysts, Fe content, and Fe−N bond structures. Their respective impacts on the CO2RR were comprehensively elucidated. Engineering the particle size and Fe doping is critical to control extrinsic morphological factors of FeN4sites for optimal porosity, electrochemically active surface areas, and the graphitization of the carbon support. In contrast, the intrinsic activity of FeN4sites was only tunable by varying thermal activation temperatures during the formation of FeN4sites, which impacted the length of the Fe−N bonds and the local strains. The structural evolution of Fe−N bonds was examined at the atomic level. First‐principles calculations further elucidated the origin of intrinsic activity improvement associated with the optimal local strain of the Fe−N bond.

     
    more » « less
  9. Abstract

    Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals.

     
    more » « less