skip to main content


Search for: All records

Creators/Authors contains: "Shappee, Benjamin. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Some galaxies show little to no sign of active galactic nucleus (AGN) activity, yet exhibit strong coronal line (CL) emission relative to common narrow emission lines. Many of these CLs have ionization potentials of ≥100 eV, thus requiring strong extreme ultraviolet and/or soft X-ray flux. It has long been thought that such events are powered by tidal disruption events (TDEs), but owing to a lack of detailed multiwavelength follow-up, such a connection has not been firmly made. Here, we compare coronal line emitters (CLEs) and TDEs in terms of their host-galaxy and transient properties. We find that the mid-infrared (MIR) colours of CLE hosts in quiescence are similar to those of TDE hosts. Additionally, many CLEs show evidence of a large dust reprocessing echo in their MIR colours, a sign of significant dust in the nucleus. The stellar masses and star formation rates of the CLE hosts are largely consistent with TDE hosts, with many CLEs residing within the green valley. The blackbody properties of CLEs and TDEs are similar, with some CLEs showing hot (T ≥ 40 000 K) blackbody temperatures. Finally, the location of CLEs on the peak-luminosity/decline-rate parameter space is much closer to TDEs than many other major classes of nuclear transients. Combined, these provide strong evidence to confirm the previous claims that CLEs are indeed TDEs in gas-rich environments. We additionally propose a stricter threshold of CL flux ≥1/3 × [O iii] flux to better exclude AGNs from the sample of CLEs.

     
    more » « less
  2. Abstract

    The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars.

     
    more » « less
  3. ABSTRACT

    We used Transiting Exoplanet Survey Satellite (TESS) data to identify 29 candidate active galactic nuclei (AGNs) through their optical variability. The high-cadence, high-precision TESS light curves present an opportunity for the identification of AGNs, including those not selected through other methods. Of the candidates, we found that 18 have either previously been identified as AGNs in the literature or could have been selected based on emission-line diagnostics, mid-IR colours, or X-ray luminosity. AGNs in low-mass galaxies offer a unique window into supermassive black hole and galaxy co-evolution and 8 of the 29 candidates have estimated black hole masses ≲ 106 M⊙. The low-mass galaxies NGC 4395 and NGC 4449 are two of our five ‘high-confidence’ candidates. Since our initial sample largely draws from just nine TESS sectors, we expect to identify at least ∼45 more candidates in the TESS primary and extended mission data sets, of which ∼60 per cent will be new AGNs and ∼20 per cent will be in low-mass galaxies.

     
    more » « less
  4. Abstract

    ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253−G003 that undergoes periodic flares. Optical flares were first observed in 2014 by the All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are well-modeled with a period of115.21.2+1.3days and period derivative of −0.0026 ± 0.0006. Here we present ASAS-SN, Chandra, HST/STIS, NICER, Swift, and TESS data for the flares that occurred on 2020 December, 2021 April, 2021 July, and 2021 November. These four flares represent flares 18–21 of the total number of flares observed by ASAS-SN so far since 2014. The HST/STIS UV spectra evolve from blueshifted broad absorption features to redshifted broad emission features over ∼10 days. The Swift UV/optical light curves peaked as predicted by the timing model, but the peak UV luminosities that varied between flares and the UV flux in Flare 20 were roughly half the brightness of the other peaks. The X-ray luminosities consistently decreased and the spectra became harder during the UV/optical rise, but apparently without changes in absorption. Finally, two high-cadence TESS light curves from Flare 18 and Flare 12 showed that the slopes during the rising and declining phases changed over time, which indicates some stochasticity in the flare’s driving mechanism. Although ASASSN-14ko remains observationally consistent with a repeating partial tidal disruption event, these rich multi-wavelength data are in need of a detailed theoretical model.

     
    more » « less
  5. Abstract Type Ia supernovae are critical for feedback and elemental enrichment in galaxies. Recent surveys like the All-Sky Automated Survey for Supernova (ASAS-SN) and the Dark Energy Survey (DES) find that the specific supernova Ia rate at z ∼ 0 may be ≲ 20 − 50 × higher in lower-mass galaxies than at Milky Way-mass. Independently, observations show that the close-binary fraction of solar-type Milky Way stars is higher at lower metallicity. Motivated by these observations, we use the FIRE-2 cosmological zoom-in simulations to explore the impact of metallicity-dependent rate models on galaxies of $M_* \sim 10^7\, \rm {M}_{\odot }-10^{11}\, \rm {M}_{\odot }$. First, we benchmark our simulated star-formation histories (SFHs) against observations, and show that assumed stellar mass functions play a major role in determining the degree of tension between observations and metallicity-independent rate models, potentially causing ASAS-SN and DES observations to agree more than might appear. Models in which the supernova Ia rate increases with decreasing metallicity ($\propto Z^{-0.5 \; \rm {to} \; -1}$) provide significantly better agreement with observations. Encouragingly, these rate increases (≳ 10 × in low-mass galaxies) do not significantly impact galaxy masses and morphologies, which remain largely unaffected except for our most extreme models. We explore implications for both [Fe/H] and [$\alpha /\rm {Fe}$] enrichment; metallicity-dependent rate models can improve agreement with the observed stellar mass-metallicity relations in low-mass galaxies. Our results demonstrate that a range of metallicity-dependent rate models are viable for galaxy formation and motivate future work. 
    more » « less
  6. Abstract We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of the young M5 primary star UCAC4 374−046899 and the very red L6 dwarf WISEA J081322.19−152203.2. These two objects have a projected separation of 61 ′ ′ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of 0.123 ± 0.006 M ⊙ , and we estimate its age as 100 Myr to 1 Gyr based on its stellar activity (via H α and X-ray emission), kinematics, and spectrophotometric properties. We derive its bulk metallicity as 0.21 ± 0.07 dex using empirical calibrations established by older and higher-gravity M dwarfs and find that this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A’s younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6 ± 1 int-g , and we infer physical properties of T eff = 1362 − 73 + 48 K, log ( g ) = 4.96 − 0.34 + 0.15 dex, R = 1.03 − 0.06 + 0.12 R Jup , and M = 39 − 18 + 11 M Jup using its bolometric luminosity, its host star’s age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B’s spectrophotometry. We find that this companion possesses ample condensate clouds in its photosphere ( f sed = 1) with the data–model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler T eff . Also, the J − K color of this companion is among the reddest for ultracool benchmarks with ages older than a few hundred megayears. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres. 
    more » « less
  7. ABSTRACT

    We analyse high-cadence data from the Transiting Exoplanet Survey Satellite (TESS) of the ambiguous nuclear transient (ANT) ASASSN-18el. The optical changing-look phenomenon in ASASSN-18el has been argued to be due to either a drastic change in the accretion rate of the existing active galactic nucleus (AGN) or the result of a tidal disruption event (TDE). Throughout the TESS observations, short-time-scale stochastic variability is seen, consistent with an AGN. We are able to fit the TESS light curve with a damped-random-walk (DRW) model and recover a rest-frame variability amplitude of $\hat{\sigma } = 0.93 \pm 0.02$ mJy and a rest-frame time-scale of $\tau _{DRW} = 20^{+15}_{-6}$ d. We find that the estimated τDRW for ASASSN-18el is broadly consistent with an apparent relationship between the DRW time-scale and central supermassive black hole mass. The large-amplitude stochastic variability of ASASSN-18el, particularly during late stages of the flare, suggests that the origin of this ANT is likely due to extreme AGN activity rather than a TDE.

     
    more » « less
  8. ABSTRACT

    We present the discovery that ATLAS18mlw was a tidal disruption event (TDE) in the galaxy WISEA J073544.83+663717.3, at a luminosity distance of 334 Mpc. Initially discovered by the Asteroid Terrestrial Impact Last Alert System (ATLAS) on 2018 March 17.3, the TDE nature of the transient was uncovered only recently with the re-reduction of a SuperNova Integral Field Spectrograph (SNIFS) spectrum. This spectrum, taken by the Spectral Classification of Astronomical Transients (SCAT) survey, shows a strong blue continuum and a broad H α emission line. Here, we present roughly 6 yr of optical survey photometry beginning before the TDE to constrain active galactic nucleus activity, optical spectroscopy of the transient, and a detailed study of the host galaxy properties through analysis of archival photometry and a host spectrum. ATLAS18mlw was detected in ground-based light curves for roughly 2 months. From a blackbody fit to the transient spectrum and bolometric correction of the optical light curve, we conclude that ATLAS18mlw is best explained by a low-luminosity TDE with a peak luminosity of log(L [erg s−1]) = 43.5 ± 0.2. The TDE classification is further supported by the quiescent Balmer strong nature of the host galaxy. We also calculated the TDE decline rate from the bolometric light curve and find ΔL40 = −0.7 ± 0.2 dex, making ATLAS18mlw a member of the growing class of ‘faint and fast’ TDEs with low peak luminosities and fast decline rates.

     
    more » « less
  9. Abstract

    Using ultraviolet (UV) light curves, we constrain the circumstellar environments of 1080 Type Ia supernovae (SNe Ia) withinz< 0.5 from archival Galaxy Evolution Explorer (GALEX) observations. All SNe Ia are required to have pre- and post-explosion GALEX observations to ensure adequate subtraction of the host-galaxy flux. Using the late-time GALEX observations, we look for the UV excess expected from any interaction between the SN ejecta and circumstellar material (CSM). Four SNe Ia are detected near maximum light, and we compare the GALEX photometry to archival data. However, we find that none of our targets show convincing evidence of CSM interaction. A recent Hubble Space Telescope (HST) survey estimates that ∼6% of SNe Ia may interact with distant CSM, but statistical inferences are complicated by the small sample size and selection effects. By injecting model light curves into our data and then recovering them, we constrain a broad range of CSM interactions based on the CSM interaction start time and the maximum luminosity. Combining our GALEX nondetections with the HST results, we constrain occurrence of late-onset CSM interaction among SNe Ia with moderate CSM interaction, similar to that observed in PTF11kx, tofCSM≲ 5.1% between 0 and 500 days after discovery and ≲2.7% between 500 and 1000 days after discovery at 90% confidence. For weaker CSM interactions similar to SN 2015cp, we obtain limits of ≲16% and ≲4.8%, respectively, for the same time ranges.

     
    more » « less
  10. ABSTRACT

    As part of an All-Sky Automated Survey for SuperNovae (ASAS-SN) search for sources with large flux decrements, we discovered a transient where the quiescent, stellar source ASASSN-V J192114.84+624950.8 rapidly decreased in flux by $\sim 55{{\ \rm per\ cent}}$ (∼0.9 mag) in the g band. The Transiting Exoplanet Survey Satellite light curve revealed that the source is a highly eccentric, eclipsing binary. Fits to the light curve using phoebe find the binary orbit to have e = 0.79, Porb = 18.462 d, and i = 88.6°, and the ratios of the stellar radii and temperatures to be R2/R1 = 0.71 and Te,2/Te,1 = 0.82. Both stars are chromospherically active, allowing us to determine their rotational periods of P1 = 1.52 d and P2 = 1.79 d, respectively. A Large Binocular Telescope/Multi-Object Double Spectrograph spectrum shows that the primary is a late-G- or early-K-type dwarf. Fits to the spectral energy distribution show that the luminosities and temperatures of the two stars are L1 = 0.48 L⊙, $T_1= 5050\, \mathrm{K}$, L2 = 0.12 L⊙, and $T_{2} = 4190\, \mathrm{K}$. We conclude that ASASSN-V J192114.84+624950.8 consists of two chromospherically active, rotational variable stars in a highly elliptical eclipsing orbit.

     
    more » « less