skip to main content


Search for: All records

Creators/Authors contains: "Sharma, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The generation, manipulation and quantification of non-classical light, such as quantum-entangled photon pairs, differs significantly from methods with classical light. Thus, quantum measures could be harnessed to give new information about the interaction of light with matter. In this study we investigate if quantum entanglement can be used to diagnose disease. In particular, we test whether brain tissue from subjects suffering from Alzheimer’s disease can be distinguished from healthy tissue. We find that this is indeed the case. Polarization-entangled photons traveling through brain tissue lose their entanglement via a decohering scattering interaction that gradually renders the light in a maximally mixed state. We found that in thin tissue samples (between 120 and 600 micrometers) photons decohere to a distinguishable lesser degree in samples with Alzheimer’s disease than in healthy-control ones. Thus, it seems feasible that quantum measures of entangled photons could be used as a means to identify brain samples with the neurodegenerative disease.

     
    more » « less
  2. Development of construction and materials standards serve technical, social and economic objectives. Most significantly, standards are required for the acceptance of materials by the engineering community. This paper contrasts the characteristics of codes and standards, and their development, for engineered materials and those for nonconventional and vernacular materials. Challenges associated with code and standard development for these materials are highlighted and discussed through case studies. Recommendations for approaches to codes and standards development for nonconventional and vernacular materials are presented. 
    more » « less
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. A<sc>bstract</sc>

    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at$$ \sqrt{s} $$s= 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (pT) of 0.2 GeV/cand up topT= 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in thepTrange 0.5< pT<26 GeV/cat$$ \sqrt{s_{\textrm{NN}}} $$sNN= 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strongpTdependence is observed in pp collisions, where the yield of high-pTelectrons increases faster as a function of multiplicity than the one of low-pTelectrons. The measurement in p-Pb collisions shows nopTdependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  7. Free, publicly-accessible full text available August 1, 2024
  8. Abstract

    The azimuthal ($$\Delta \varphi $$Δφ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$sNN=5.02TeV. Results are reported for electrons with transverse momentum$$44<pT<16$$\textrm{GeV}/c$$GeV/c and pseudorapidity$$|\eta |<0.6$$|η|<0.6. The associated charged particles are selected with transverse momentum$$11<pT<7$$\textrm{GeV}/c$$GeV/c, and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$|Δη|<1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$Δφdistribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  9. A<sc>bstract</sc>

    This article reports measurements of the angle between differently defined jet axes in pp collisions at$$ \sqrt{s} $$s= 5.02 TeV carried out by the ALICE Collaboration. Charged particles at midrapidity are clustered into jets with resolution parametersR= 0.2 and 0.4. The jet axis, before and after Soft Drop grooming, is compared to the jet axis from the Winner-Takes-All (WTA) recombination scheme. The angle between these axes, ∆Raxis, probes a wide phase space of the jet formation and evolution, ranging from the initial high-momentum-transfer scattering to the hadronization process. The ∆Raxisobservable is presented for 20<$$ {p}_{\textrm{T}}^{\textrm{ch}\ \textrm{jet}} $$pTchjet<100 GeV/c, and compared to predictions from the PYTHIA 8 and Herwig 7 event generators. The distributions can also be calculated analytically with a leading hadronization correction related to the non-perturbative component of the Collins-Soper-Sterman (CSS) evolution kernel. Comparisons to analytical predictions at next-to-leading-logarithmic accuracy with leading hadronization correction implemented from experimental extractions of the CSS kernel in Drell-Yan measurements are presented. The analytical predictions describe the measured data within 20% in the perturbative regime, with surprising agreement in the non-perturbative regime as well. These results are compatible with the universality of the CSS kernel in the context of jet substructure.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  10. A<sc>bstract</sc>

    The production of inclusive, prompt and non-prompt J/ψwas studied for the first time at midrapidity (−1.37< ycms<0.43) in p-Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$sNN= 8.16 TeV with the ALICE detector at the LHC. The inclusive J/ψmesons were reconstructed in the dielectron decay channel in the transverse momentum (pT) interval 0< pT<14 GeV/cand the prompt and non-prompt contributions were separated on a statistical basis forpT>2 GeV/c. The study of the J/ψmesons in the dielectron channel used for the first time in ALICE online single-electron triggers from the Transition Radiation Detector, providing a data sample corresponding to an integrated luminosity of 689 ± 13μb1. The proton-proton reference cross section for inclusive J/ψwas obtained based on interpolations of measured data at different centre-of-mass energies and a universal function describing thepT-differential J/ψproduction cross sections. ThepT-differential nuclear modification factorsRpPbof inclusive, prompt, and non-prompt J/ψare consistent with unity and described by theoretical models implementing only nuclear shadowing.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024