skip to main content


Search for: All records

Creators/Authors contains: "Sharma, Prachi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    In high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved. We attribute the non-uniform relaxation dynamics to the heterogeneous evolution of polaron delocalization and increasing scattering time. The initial high-density excitation results in faster relaxation due to strong many-body interactions, followed by extended carrier lifetimes at lower densities. These results point towards the missing link between the optoelectronic heterogeneity and associated carrier dynamics to guide synthesis and device engineering for improved perovskites device performance.

     
    more » « less
  4. We present three heterobimetallic complexes containing an isostructural nickel center and a lutetium ion in varying coordination environments. The bidentate iPr2PCH2NHPh and nonadentate (iPr2PCH2NHAr)3tacn ligands were used to prepare the Lu metalloligands, Lu( i Pr 2 PCH 2 NPh) 3 ( 1 ) and Lu{( i Pr 2 PCH 2 NAr) 3 tacn} ( 2 ), respectively. Reaction of Ni(COD) 2 (where COD is 1,5-cyclooctadiene) and 1 afforded NiLu( i Pr 2 PCH 2 NPh) 3 ( 3 ), with a Lu coordination number (CN) of 4 and a Ni–Lu distance, d (Ni–Lu), of 2.4644(2) Å. Complex 3 can further bind THF to form 3-THF , increasing both the Lu CN to 5 and d (Ni–Lu) to 2.5989(4) Å. On the other hand, incorporation of Ni(0) into 2 provides NiLu{( i Pr 2 PCH 2 NAr) 3 tacn} ( 4 ), in which the Lu coordination environment is more saturated (CN = 6), and the d (Ni–Lu) is substantially elongated at 2.9771(5) Å. Cyclic voltammetry of the three Ni–Lu complexes shows an overall ∼410 mV shift in the Ni(0/I) redox couple, suggesting tunability of the Ni electronics across the series. Computational studies reveal polarized bonding interactions between the Ni 3d z2 (major) and the Lu 5d z2 (minor) orbitals, where the percentage of Lu character increases in the order: 4 (6.0% Lu 5d z2 ) < 3-THF (8.5%) < 3 (9.3%). All three Ni–Lu complexes bind H 2 at low temperatures (−30 to −80 °C) and are competent catalysts for styrene hydrogenation. Complex 3 outperforms 4 with a four-fold faster rate. Additionally, adding increasing THF equivalents to 3 , which would favor build-up of 3-THF , decreases the rate. We propose that altering the coordination sphere of the Lu support can influence the resulting properties and catalytic activity of the active Ni(0) metal center. 
    more » « less
  5. Free, publicly-accessible full text available May 22, 2024