skip to main content


Search for: All records

Creators/Authors contains: "Sharma, Prashant P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The systematics of the arachnid order Solifugae have been an enigma, owing to challenges in interpreting morphology, a paucity of molecular phylogenetic studies sampling across the group, and a dearth of taxonomic attention for many lineages. Recent work has suggested that solifuge families largely exhibit contiguous distributions and reflect patterns of vicariance, with the exception of three families: Melanoblossidae, Daesiidae and Gylippidae. Morphological studies have cast doubt on their existing circumscriptions and the present composition of these taxa renders their distributions as disjunct. We leveraged ultraconserved elements (UCEs) to test the phylogenetic placement of three key lineages of Solifugae that cause these anomalous distributions: Dinorhax rostrumpsittaci (putative melanoblossid), Namibesia (putative daesiid), and Trichotoma (putative gylippid). Phylogenetic placement of these three genera based on UCEs rendered the families that harbor them as para- or polyphyletic, recovering instead relationships that better accord with a biogeographic history driven by vicariance. Toward a stable and phylogenetically informed classification of Solifugae, we establish three new families, Dinorhaxidae new rank, Namibesiidae new rank and Lipophagidae new rank. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Synopsis

    The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.

     
    more » « less
  3. Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes. One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny, have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset, sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient, originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for Paleotropical taxa. 
    more » « less
  4. Advanced sequencing technologies have expedited resolution of higher-level arthropod relationships. Yet, dark branches persist, principally among groups occurring in cryptic habitats. Among chelicerates, Solifugae ("camel spiders") is the last order lacking a higher-level phylogeny and have thus been historically characterized as "neglected [arachnid] cousins". Though renowned for aggression, remarkable running speed, and xeric adaptation, inferring solifuge relationships has been hindered by inaccessibility of diagnostic morphological characters, whereas molecular investigations have been limited to one of 12 recognized families. Our phylogenomic dataset via capture of ultraconserved elements sampling all extant families recovered a well-resolved phylogeny, with two distinct groups of New World taxa nested within a broader Paleotropical radiation. Divergence times using fossil calibrations inferred that Solifugae radiated by the Permian, and most families diverged prior to the Paleogene-Cretaceous extinction, likely driven by continental breakup. We establish Boreosolifugae new suborder uniting five Laurasian families, and Australosolifugae new suborder uniting seven Gondwanan families using morphological and biogeographic signal. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  5. True, John (Ed.)
    Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies. 
    more » « less
  6. Newton, Irene L. (Ed.)
    Here, we report the draft genome and annotation of Candidatus Nardonella dryophthoridicola strain NARMHE1, obtained via Oxford Nanopore sequencing of the ovaries of its host, the weevil Metamasius hemipterus, from a population from southeast Brazil. 
    more » « less
  7. Abstract

    Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher‐level taxa to be non‐monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.g. family Chactidae). In the same line, it has been shown that some nodes in the Arachnid Tree of Life show disagreement between hypotheses generated using transcritptomes and other genomic sources such as the ultraconserved elements (UCEs). Here, we compared the phylogenetic signal of transcriptomes vs. UCEs by retrieving UCEs from new and previously published scorpion transcriptomes and genomes, and reconstructed phylogenies using both datasets independently. We reexamined the monophyly and phylogenetic placement of Chactidae, sampling an additional chactid species using both datasets. Our results showed that both sets of genome‐scale datasets recovered highly similar topologies, with Chactidae rendered paraphyletic owing to the placement ofNullibrotheas allenii. As a first step toward redressing the systematics of Chactidae, we establish the family Anuroctonidae (new family) to accommodate the genusAnuroctonus.

     
    more » « less
  8. Abstract

    Recent advances in higher‐level invertebrate phylogeny have leveraged shared features of genomic architecture to resolve contentious nodes across the tree of life. Yet, the interordinal relationships within Chelicerata have remained recalcitrant given competing topologies in recent molecular analyses. As such, relationships between topologically unstable orders remain supported primarily by morphological cladistic analyses. Solifugae, one such unstable chelicerate order, has long been thought to be the sister group of Pseudoscorpiones, forming the clade Haplocnemata, on the basis of eight putative morphological synapomorphies. The discovery, however, of a shared whole genome duplication placing Pseudoscorpiones in Arachnopulmonata provides the opportunity for a simple litmus test evaluating the validity of Haplocnemata. Here, we present the first developmental transcriptome of a solifuge (Titanopuga salinarum) and survey copy numbers of the homeobox genes for evidence of systemic duplication. We find that over 70% of the identified homeobox genes inT. salinarumare retained in a single copy, while representatives of the arachnopulmonates retain orthologs of those genes as two or more copies. Our results refute the placement of Solifugae in Haplocnemata. Subsequent reevaluation of putative interordinal morphological synapomorphies among chelicerates reveals a high incidence of homoplasy, reversals, and inaccurate coding within Haplocnemata and other small clades, as well as Arachnida more broadly, suggesting existing morphological character matrices are insufficient to resolve chelicerate phylogeny.

     
    more » « less
  9. Abstract Background

    The comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman)Phalangium opilio, a member of the order Opiliones.Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system.

    Results

    We present a staging system ofP. opilioembryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation.

    Conclusion

    Considering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference forP.opiliothat we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids.

     
    more » « less