skip to main content


Search for: All records

Creators/Authors contains: "Shatruk, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 5, 2025
  2. Abstract

    We report a transport study on Pd3In7which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7is characterized by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field (μ0H) having a non-zero component along the electrical current, we find a large, positive, and linear inμ0Hlongitudinal magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fieldsEμ0H) is large and positive, increasing by 103−104% as a function ofμ0Hwhile following an anomalous, angle-dependent power law$${\rho }_{{{{\rm{xx}}}}}\propto {({\mu }_{0}H)}^{n}$$ρxx(μ0H)nwithn(θ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance.

     
    more » « less
  3. Abstract

    We report a theoretical investigation of effects of Mn and Co substitution in the transition metal sites of the kagomé-lattice ferromagnet, Fe3Sn2. Herein, hole- and electron-doping effects of Fe3Sn2have been studied by density-functional theory calculations on the parent phase and on the substituted structural models of Fe3−xMxSn2(M = Mn, Co;x= 0.5, 1.0). All optimized structures favor the ferromagnetic ground state. Analysis of the electronic density of states (DOS) and band structure plots reveals that the hole (electron) doping leads to a progressive decrease (increase) in the magnetic moment per Fe atom and per unit cell overall. The high DOS is retained nearby the Fermi level in the case of both Mn and Co substitutions. The electron doping with Co results in the loss of nodal band degeneracies, while in the case of hole doping with Mn emergent nodal band degeneracies and flatbands initially are suppressed in Fe2.5Mn0.5Sn2but re-emerge in Fe2MnSn2. These results provide key insights into potential modifications of intriguing coupling between electronic and spin degrees of freedom observed in Fe3Sn2.

     
    more » « less
  4. We report liquid-phase exfoliation (LPE) of bulk layered-structure semiconductor, MnIn 2 Se 4 , to nanoscale thick sheets by ultrasonication followed by sequential centrifugation at 2000, 5000, and 7500 rpm. The nanosheets exfoliated by LPE in isopropyl alcohol show an average thickness of 50, 40, and 14 nm, respectively. The smallest of these values corresponds approximately to ten 7-atom thick [Se–In–Se–Mn–Se–In–Se] layers that compose the bulk structure of MnIn 2 Se 4 . Both the bulk material and the exfoliated samples show photoluminescence, but the weak shoulder observed from the indirect band gap emission is obviously suppressed in the nanosheet samples as compared to the bulk sample. Similar to the bulk, the nanosheets isolated at 2000 and 5000 rpm exhibit spin-glass behavior with a freezing temperature of ∼3 K. In contrast, the nanosheets isolated at 7500 rpm do not exhibit any anomalies in their low-temperature magnetic behavior. These results demonstrate the possibility to extend the LPE technique to van-der-Waals materials with several-atom-thick layers. 
    more » « less