skip to main content


Search for: All records

Creators/Authors contains: "Shen, Ken J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Gaia's exquisite parallax measurements allowed for the discovery and characterization of the Q branch in the Hertzsprung–Russell diagram, where massive C/O white dwarfs (WDs) pause their dimming due to energy released during crystallization. Interestingly, the fraction of old stars on the Q branch is significantly higher than in the population of WDs that will become Q branch stars or that were Q branch stars in the past. From this, Cheng et al. inferred that ∼6% of WDs passing through the Q branch experience a much longer cooling delay than that of standard crystallizing WDs. Previous attempts to explain this cooling anomaly have invoked mechanisms involving supersolar initial metallicities. In this paper, we describe a novel scenario in which a standard composition WD merges with a subgiant star. The evolution of the resulting merger remnant leads to the creation of a large amount of26Mg, which, along with the existing22Ne, undergoes a distillation process that can release enough energy to explain the Q branch cooling problem without the need for atypical initial abundances. The anomalously high number of old stars on the Q branch may thus be evidence that mass transfer from subgiants to WDs leads to unstable mergers.

     
    more » « less
  2. Abstract

    Type Ia supernova explosions (SN Ia) are fundamental sources of elements for the chemical evolution of galaxies. They efficiently produce intermediate-mass (withZbetween 11 and 20) and iron group elements—for example, about 70% of the solar iron is expected to be made by SN Ia. In this work, we calculate complete abundance yields for 39 models of SN Ia explosions, based on three progenitors—a 1.4Mdeflagration detonation model, a 1.0Mdouble detonation model, and a 0.8Mdouble detonation model—and 13 metallicities, with22Ne mass fractions of 0, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 2 × 10−3, 5 × 10−3, 1 × 10−2, 1.4 × 10−2, 5 × 10−2, and 0.1, respectively. Nucleosynthesis calculations are done using the NuGrid suite of codes, using a consistent nuclear reaction network between the models. Complete tables with yields and production factors are provided online at Zenodo:Yields (https://doi.org/10.5281/zenodo.8060323). We discuss the main properties of our yields in light of the present understanding of SN Ia nucleosynthesis, depending on different progenitor mass and composition. Finally, we compare our results with a number of relevant models from the literature.

     
    more » « less
  3. Free, publicly-accessible full text available July 27, 2024
  4. Abstract

    Type Ia supernovae (SNe Ia) are securely understood to come from the thermonuclear explosion of a white dwarf as a result of binary interaction, but the nature of that binary interaction and the secondary object is uncertain. Recently, a double white dwarf model known as the dynamically driven double-degenerate double-detonation (D6) model has become a promising explanation for these events. One realization of this scenario predicts that the companion may survive the explosion and reside within the remnant as a fast moving (Vpeculiar> 1000 km s−1), overluminous (L> 0.1L) white dwarf. Recently, three objects that appear to have these unusual properties have been discovered in the Gaia survey. We obtained photometric observations of the SN Ia remnant SN 1006 with the Dark Energy Camera over four years to attempt to discover a similar star. We present a deep, high-precision astrometric proper-motion survey of the interior stellar population of the remnant. We rule out the existence of a high-proper-motion object consistent with our tested realization of the D6 scenario (Vtransverse> 600 km s−1withmr< 21 corresponding to an intrinsic luminosity ofL> 0.0176L). We conclude that such a star does not exist within the remnant or is hidden from detection by either strong localized dust or the unlikely possibility of ejection from the binary system almost parallel to the line of sight.

     
    more » « less
  5. Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s −1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳10 38 erg s −1 , similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙ , effective temperature T eff ≈ 3000 K, and lifetime ∼10 4 –10 5 yr. We predict that ∼10 3 –10 4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger. 
    more » « less
  6. We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪  The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪  The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪  The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪  Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients. 
    more » « less
  7. Abstract

    Tight binary or multiple-star systems can interact through mass transfer and follow vastly different evolutionary pathways than single stars. The star TYC 2597-735-1 is a candidate for a recent stellar merger remnant resulting from a coalescence of a low-mass companion with a primary star a few thousand years ago. This violent event is evident in a conical outflow (“Blue Ring Nebula”) emitting in UV light and surrounded by leading shock filaments observed in Hαand UV emission. From Chandra data, we report the detection of X-ray emission from the location of TYC 2597-735-1 with a luminositylog(LX/Lbol)=5.5. Together with a previously reported period of ~14 days, this indicates ongoing stellar activity and the presence of strong magnetic fields on TYC 2597-735-1. Supported by stellar evolution models of merger remnants, we interpret the inferred stellar magnetic field as dynamo action associated with a newly formed convection zone in the atmosphere of TYC 2597-735-1, though internal shocks at the base of an accretion-powered jet cannot be ruled out. We speculate that this object will evolve into an FK Com–type source, i.e., a class of rapidly spinning magnetically active stars for which a merger origin has been proposed but for which no relic accretion or large-scale nebula remains visible. We also detect likely X-ray emission from two small regions close to the outer shock fronts in the Blue Ring Nebula, which may arise from inhomogeneities either in the circumstellar medium or in the mass and velocity distribution in the merger-driven outflow.

     
    more » « less
  8. null (Ed.)
  9. ABSTRACT

    A promising progenitor scenario for Type Ia supernovae (SNeIa) is the thermonuclear detonation of a white dwarf in a close binary system with another white dwarf. After the primary star explodes, the surviving donor can be spontaneously released as a hypervelocity runaway. One such runaway donor candidate is LP 398-9, whose orbital trajectory traces back ≈105 yr to a known supernova remnant. Here, we report the discovery of carbon-rich circumstellar material around LP 398-9, revealed by a strong infrared excess and analysed with follow-up spectroscopy. The circumstellar material is most plausibly composed of inflated layers from the star itself, mechanically and radioactively heated by the past companion’s supernova. We also detect a 15.4 h periodic signal in the UV and optical light curves of LP 398-9, which we interpret as surface rotation. The rotation rate is consistent with theoretical predictions from this supernova mechanism, and the brightness variations could originate from surface inhomogeneity deposited by the supernova itself. Our observations strengthen the case for this double-degenerate SNIa progenitor channel, and motivate the search for more runaway SNIa donors.

     
    more » « less
  10. null (Ed.)
    ABSTRACT The ejecta velocity is a very important parameter in studying the structure and properties of Type Ia supernovae (SNe Ia) and is a candidate key parameter in improving the utility of SNe Ia for cosmological distance determinations. Here, we study the velocity distribution of a sample of 311 SNe Ia from the kaepora data base. The velocities are derived from the Si ii λ6355 absorption line in optical spectra measured at (or extrapolated to) the time of peak brightness. We statistically show that the observed velocity has a bimodal Gaussian distribution (population ratio 201:110 or 65 per cent:35 per cent) consisting of two groups of SNe Ia: Group I with a lower but narrower scatter ($11\, 000 \pm 700\, \mathrm{km\, s}^{-1}$), and Group II with a higher but broader scatter ($12\, 300 \pm 1800\, \mathrm{km\, s}^{-1}$). The true origin of the two components is unknown. Naturally, there could exist two intrinsic velocity distributions observed. However, we try to use asymmetric geometric models through statistical simulations to reproduce the observed distribution assuming that all SNe Ia share the same intrinsic distribution. In the two cases we consider, 35 per cent of SNe Ia are considered to be asymmetric in Case 1, and all SNe Ia are asymmetric in Case 2. Simulations for both cases can reproduce the observed velocity distribution but require a significantly large portion ($\gt 35{{\ \rm per\ cent}}$) of SNe Ia to be asymmetric. In addition, the Case 1 result is consistent with recent SNe Ia polarization observations that higher Si ii λ6355 velocities tend to be more polarized. 
    more » « less