skip to main content


Search for: All records

Creators/Authors contains: "Sheng, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry. 
    more » « less
  2. Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Zeolites (ZSM-5 and Beta) with different SiO2/Al2O3 ratios were synthesized as solid acids for hydrolyzing cellulose in an inorganic ionic liquid system (lithium bromide trihydrate solution, LBTH) under mild conditions. The results indicated that the texture properties of zeolite had little effect on catalytic activity, while acidity of zeolite was crucial to the cellulose hydrolysis. In the LBTH system, H-form zeolites released H+ into the solution from their acid sites via ion-exchange with Li+, which hydrolyzed the cellulose already dissolved. This unique homogeneous hydrolysis mechanism was the primary reason for the excellent performance of the zeolites in catalyzing cellulose hydrolysis in the LBTH system. It was found cellulose could be completely hydrolyzed to glucose and oligoglucan by 2% (w/w on cellulose) zeolite at 140 °C within 3 h with a single-pass glucose yield 61%. The zeolites could be recovered with 50% initial catalytic activity after regeneration and reused with stable catalytic activity. 
    more » « less
  4. ABSTRACT

    Investigating the physical and chemical structure of massive star-forming regions is critical for understanding the formation and early evolution of massive stars. We performed a detailed line survey toward six dense cores, named MM1, MM4, MM6, MM7, MM8, and MM11, in the G9.62+0.19 star-forming region resolved in Atacama Large Millimeter/submillimeter Array (ALMA) band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species, including organic oxygen-, nitrogen-, and sulphur-bearing molecules and their isotopologues. Four dense cores, MM7, MM8, MM4, and MM11, are line-rich sources. Modelling of these spectral lines reveals that the rotational temperature lies in the range 72–115, 100–163, 102–204, and 84–123 K for MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 × 1015–9.2 × 1017 cm−2 toward the four cores. The cores MM8 and MM4 show a chemical difference between oxygen- and nitrogen-bearing species, i.e. MM4 is rich in oxygen-bearing molecules, while nitrogen-bearing molecules, especially vibrationally excited HC3N lines, are mainly observed in MM8. The distinct initial temperatures at the accretion phase may lead to this N/O differentiation. Through analysing column densities and spatial distributions of O-bearing complex organic molecules (COMs), we found that C2H5OH and CH3OCH3 might have a common precursor, CH3OH. CH3OCHO and CH3OCH3 are likely chemically linked. In addition, the observed variation in HC3N and HC5N emission may indicate their different formation mechanisms in hot and cold regions.

     
    more » « less
  5. ABSTRACT

    We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.

     
    more » « less