skip to main content


Search for: All records

Creators/Authors contains: "Shi, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using transdimensional plasmonic materials (TDPM) within the framework of fluctuational electrodynamics, we demonstrate nonlocality in dielectric response alters near-field heat transfer at gap sizes on the order of hundreds of nanometers. Our theoretical study reveals that, opposite to the local model prediction, propagating waves can transport energy through the TDPM. However, energy transport by polaritons at shorter separations is reduced due to the metallic response of TDPM stronger than that predicted by the local model. Our experiments conducted for a configuration with a silica sphere and a doped silicon plate coated with an ultrathin layer of platinum as the TDPM show good agreement with the nonlocal near-field radiation theory. Our experimental work in conjunction with the nonlocal theory has important implications in thermophotovoltaic energy conversion, thermal management applications with metal coatings, and quantum-optical structures. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. The dynamics of the electron population in the Earth’s radiation belts affect the upper atmosphere’s ionization level through the low-energy Electron Precipitation (EP). The impact of low-energy EP on the high-latitude ionosphere has been well explained since the 1960’s decade. Conversely, it is still not well understood for the region of the South American Magnetic Anomaly (SAMA). In this study, we present the results of analysis of the strong geomagnetic storm associated with the Interplanetary Coronal Mass Ejection (May 27-28, 2017). The atypical auroral sporadic E layers (Es a ) over SAMA are observed in concomitance with the hiss and magnetosonic wave activities in the inner radiation belt. The wave-particle interaction effects have been estimated, and the dynamic mechanisms that caused the low-energy EP over SAMA were investigated. We suggested that the enhancement in pitch angle scattering driven by hiss waves result in the low-energy EP (≥10 keV) into the atmosphere over SAMA. The impact of these precipitations on the ionization rate at the altitude range from 100 to 120 km can generate the Es a layer in this peculiar region. In contrast, we suggested that the low-energy EP (≤1 keV) causes the maximum ionization rate close to 150 km altitude, contributing to the Es a layer occurrence in these altitudes. 
    more » « less
  4. null (Ed.)
  5. Free, publicly-accessible full text available January 22, 2025
  6. The lateral deformations of webs in roll-to-roll (R2R) process machines can affect the quality of the manufacturing process. Webs can enter a cylindrical roller normally if the forces required to sustain normal entry and do not exceed the available friction forces. Webs with simple non-uniform length variation across their width (camber) will steer toward the long side, affecting the steady state lateral deformation and hence registration. Most previous studies have focused on tests and modeling a cambered web span in a free span between two rollers. Often these studies assume some displacement and slope boundary conditions are known and seek the remaining condition(s) that would dictate the steady state lateral deformation of the cambered web in the free span. In many spans in a process machine there may be no known boundary conditions and no steady state deformation of the cambered web. The web may travel toward the long side continually from one web span until the next until a web guide attempts to return the web to an acceptable lateral location in the process machine. The simplest case of multiple span cambered web lateral behavior is that of a cambered web belt transiting two aligned rollers which is the focus of the current work. Dynamic simulation (Abaqus/Standard) has been used to better understand the response of cambered webs under tension that has been witnessed in tests. 
    more » « less