skip to main content


Search for: All records

Creators/Authors contains: "Shi, Weisong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous mobile robots (AMRs) have the capability to execute a wide range of tasks with minimal human intervention. However, one of the major limitations of AMRs is their limited battery life, which often results in interruptions to their task execution and the need to reach the nearest charging station. Optimizing energy consumption in AMRs has become a critical challenge in their deployment. Through empirical studies on real AMRs, we have identified a lack of coordination between computation and control as a major source of energy inefficiency. In this paper, we propose a comprehensive energy prediction model that provides real-time energy consumption for each component of the AMR. Additionally, we propose three path models to address the obstacle avoidance problem for AMRs. To evaluate the performance of our energy prediction and path models, we have developed a customized AMR called Donkey, which has the capability for fine-grained (millisecond-level) end-to-end power profiling. Our energy prediction model demonstrated an accuracy of over 90% in our evaluations. Finally, we applied our energy prediction model to obstacle avoidance and guided energy-efficient path selection, resulting in up to a 44.8% reduction in energy consumption compared to the baseline. 
    more » « less
    Free, publicly-accessible full text available May 29, 2024
  2. Li, Fengjun ; Liang, Kaitai ; Lin, Zhiqiang ; Katsikas, Sokratis K. (Ed.)
    Mobile computing devices have been used to store and process sensitive or even mission critical data. To protect sensitive data in mobile devices, encryption is usually incorporated into major mobile operating systems. However, traditional encryption can not defend against coercive attacks in which victims are forced to disclose the key used to decrypt the sensitive data. To combat the coercive attackers, plausibly deniable encryption (PDE) has been introduced which can allow the victims to deny the existence of the sensitive data. However, the existing PDE systems designed for mobile devices are either insecure (i.e., suffering from deniability compromises) or impractical (i.e., unable to be compatible with the storage architecture of mainstream mobile devices, not lightweight, or not user-oriented). In this work, we design CrossPDE, the first cross-layer mobile PDE system which is secure, being compatible with the storage architecture of mainstream mobile devices, lightweight as well as user-oriented. Our key idea is to intercept major layers of a mobile storage system, including the file system layer (preventing loss of hidden sensitive data and enabling users to use the hidden mode), the block layer (taking care of expensive encryption and decryption), and the flash translation layer (eliminating traces caused by the hidden sensitive data). Experimental evaluation on our real-world prototype shows that CrossPDE can ensure deniability with a modest decrease in throughput. 
    more » « less
  3. Vehicle tracking, a core application to smart city video analytics, is becoming more widely deployed than ever before thanks to the increasing number of traffic cameras and recent advances in computer vision and machine-learning. Due to the constraints of bandwidth, latency, and privacy concerns, tracking tasks are more preferable to run on edge devices sitting close to the cameras. However, edge devices are provisioned with a fixed amount of computing budget, making them incompetent to adapt to time-varying and imbalanced tracking workloads caused by traffic dynamics. In coping with this challenge, we propose WatchDog, a real-time vehicle tracking system that fully utilizes edge nodes across the road network. WatchDog leverages computer vision tasks with different resource-accuracy tradeoffs, and decomposes and schedules tracking tasks judiciously across edge devices based on the current workload to maximize the number of tasks while ensuring a provable response time-bound at each edge device. Extensive evaluations have been conducted using real-world city-wide vehicle trajectory datasets, achieving exceptional tracking performance with a real-time guarantee. 
    more » « less
  4. Lin, Jingqiang ; Tang, Qiang (Ed.)
    Nowadays, mobile devices have been used broadly to store and process sensitive data. To ensure confidentiality of the sensitive data, Full Disk Encryption (FDE) is often integrated in mainstream mobile operating systems like Android and iOS. FDE however cannot defend against coercive attacks in which the adversary can force the device owner to disclose the decryption key. To combat the coercive attacks, Plausibly Deniable Encryption (PDE) is leveraged to plausibly deny the very existence of sensitive data. However, most of the existing PDE systems for mobile devices are deployed at the block layer and suffer from deniability compromises. Having observed that none of existing works in the literature have experimentally demonstrated the aforementioned compromises, our work bridges this gap by experimentally confirming the deniability compromises of the block-layer mobile PDE systems. We have built a mobile device testbed, which consists of a host computing device and a flash storage device. Additionally, we have deployed both the hidden volume-based PDE and the steganographic file system-based PDE at the block layer of our testbed and performed disk forensics to assess potential compromises on the raw NAND flash. Our experimental results confirm it is indeed possible for the adversary to compromise the block-layer PDE systems when the adversary can have access to the raw NAND flash in real world. We also discuss practical issues when performing such attacks in practice. 
    more » « less
  5. While our society accelerates its transition to the Internet of Things, billions of IoT devices are now linked to the network. While these gadgets provide enormous convenience, they generate a large amount of data that has already beyond the network’s capacity. To make matters worse, the data acquired by sensors on such IoT devices also include sensitive user data that must be appropriately treated. At the moment, the answer is to provide hub services for data storage in data centers. However, when data is housed in a centralized data center, data owners lose control of the data, since data centers are centralized solutions that rely on data owners’ faith in the service provider. In addition, edge computing enables edge devices to collect, analyze, and act closer to the data source, the challenge of data privacy near the edge is also a tough nut to crack. A large number of user information leakage both for IoT hub and edge made the system untrusted all along. Accordingly, building a decentralized IoT system near the edge and bringing real trust to the edge is indispensable and significant. To eliminate the need for a centralized data hub, we present a prototype of a unique, secure, and decentralized IoT framework called Reja, which is built on a permissioned Blockchain and an intrusion-tolerant messaging system ChiosEdge, and the critical components of ChiosEdge are reliable broadcast and BFT consensus. We evaluated the latency and throughput of Reja and its sub-module ChiosEdge. 
    more » « less
  6. Modern mobile devices are increasingly used to store and process sensitive data. In order to prevent the sensitive data from being leaked, one of the best ways of protecting them and their owner is to hide the data with plausible deniability. Plausibly Deniable Encryption (PDE) has been designed for such purpose. The existing PDE systems for mobile devices however, have suffered from significant drawbacks as they either ignore the deniability compromises present in the special underlying storage media of mobile devices or are vulnerable to various new attacks such as side-channel attacks. In this work, we propose a new PDE system design for mobile devices which takes advantage of the hardware features equipped in the mainstream mobile devices. Our preliminary design has two major component: First, we strictly isolate the hidden and the public data in the flash layer, so that a multi-snapshot adversary is not able to identify the existence of the hidden sensitive data when having access to the low layer storage medium of the device. Second, we incorporate software and operating system level deniability into ARM TrustZone. With this TrustZone-enhanced isolation, our PDE system is immune to side-channel attacks at the operating system layer. 
    more » « less