skip to main content


Search for: All records

Creators/Authors contains: "Shi, Xinping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With time-resolved measurements, we investigate the inverse Faraday effect of gold nanodisks in random monolayers. Order-of-magnitude enhancements are observed for 3.9% fill-factor samples (compared to gold film) which increases with proximity to the plasmonic resonance.

     
    more » « less
  2. A number of technological applications and scientific experiments require processes for preparing metal multilayers with electronically and thermally conductive interfaces. We investigate how in situ vs ex situ synthesis processes affect the thermal conductance of metal/metal interfaces. We use time-domain thermoreflectance experiments to study thermal transport in Au/Fe, Al/Cu, and Cu/Pt bilayer samples. We quantify the effect of exposing the bottom metal layer to an ambient environment prior to deposition of the top metal layer. We observe that for Au/Fe, exposure of the Fe layer to air before depositing the top Au layer significantly impedes interfacial electronic currents. Exposing Cu to air prior to depositing an Al layer effectively eliminates interfacial electronic heat currents between the two metal layers. Exposure to air appears to have no effect on interfacial transport in the Cu/Pt system. Finally, we show that a short RF sputter etch of the bottom layer surface is sufficient to ensure a thermally and electronically conductive metal/metal interface in all materials we study. We analyze our results with a two-temperature model and bound the electronic interface conductance for the nine samples we study. Our findings have applications for thin-film synthesis and advance fundamental understanding of electronic thermal conductance at different types of interfaces between metals. 
    more » « less
  3. null (Ed.)