skip to main content


Search for: All records

Creators/Authors contains: "Shin, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chinn, C. ; Tan, E. ; Chan, C. ; Kali, Y. (Ed.)
    We developed the Systems Thinking (ST) and Computational Thinking (CT) Identification Tool (ID Tool) to identify student involvement in ST and CT as they construct and revise computational models. Our ID Tool builds off the ST and CT Through Modeling Framework, emphasizing the synergistic relationship between ST and CT and demonstrating how both can be supported through computational modeling. This paper describes the process of designing and validating the ID Tool with special emphasis on the observable indicators of testing and debugging computational models. We collected 75 hours of students’ interactions with a computational modeling tool and analyzed them using the ID Tool to characterize students’ use of ST and CT when involved in modeling. The results suggest that the ID Tool has the potential to allow researchers and practitioners to identify student involvement in various aspects of ST and CT as they construct and revise computational models. 
    more » « less
  2. Chinn, C. ; Tan, E. ; Chan, C. ; Kali, Y. (Ed.)
    This study explores how to support teachers in developing and implementing effective pedagogical strategies to promote students in making sense of phenomena through computational modeling in remote contexts. Qualitative analyses of eight teachers’ interviews were conducted to characterize their pedagogical strategies to achieve three-dimensional learning. Findings indicate that typical teacher strategies include the teacher and students co-constructing a model and using whole class or group discussions to support students’ modeling practices. 
    more » « less
  3. null (Ed.)
    This paper introduces project-based learning (PBL) features for developing technological, curricular, and pedagogical supports to engage students in computational thinking (CT) through modeling. CT is recognized as the collection of approaches that involve people in computational problem solving. CT supports students in deconstructing and reformulating a phenomenon such that it can be resolved using an information-processing agent (human or machine) to reach a scientifically appropriate explanation of a phenomenon. PBL allows students to learn by doing, to apply ideas, figure out how phenomena occur and solve challenging, compelling and complex problems. In doing so, students take part in authentic science practices similar to those of professionals in science or engineering, such as computational thinking. This paper includes 1) CT and its associated aspects, 2) The foundation of PBL, 3) PBL design features to support CT through modeling, and 4) a curriculum example and associated student models to illustrate how particular design features can be used for developing high school physical science materials, such as an evaporative cooling unit to promote the teaching and learning of CT. 
    more » « less
  4. Gresalfi, M. ; Horn, I. S. (Ed.)
    Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue. 
    more » « less
  5. Gresalfi, M. ; Horn, I. S. (Ed.)
    Computational Thinking (CT) is increasingly being targeted as a pedagogical goal for science education. As such, researchers and teachers should collaborate to scaffold student engagement with CT alongside new technology and curricula. We interviewed two high school teachers who implemented a unit using dynamic modeling software to examine how they supported student engagement with CT through modeling practices. Based on their interviews, they believed that they supported student engagement in CT and modeling through preliminary activities, conducting classroom demonstrations of the phenomenon, and engaging students in model revisions through dialogue. 
    more » « less
  6. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  7. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less