skip to main content


Search for: All records

Creators/Authors contains: "Shipley, Thomas F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Visual representations of data are widely used for communication and understanding, particularly in science, technology, engineering, and mathematics (STEM). However, despite their importance, many people have difficulty understanding data-based visualizations. This work presents a series of three studies that examine how understanding time-based Earth-science data visualizations are influenced by scale and the different directions time can be represented (e.g., the Geologic Time Scale represents time moving from bottom-to-top, whereas many calendars represent time moving left-to-right). In Study 1, 316 visualizations from two top scholarly geoscience journals were analyzed for how time was represented. These expert-made graphs represented time in a range of ways, with smaller timescales more likely to be represented as moving left-to-right and larger scales more likely to be represented in other directions. In Study 2, 47 STEM novices were recruited from an undergraduate psychology experiment pool and asked to construct four separate graphs representing change over two scales of time (Earth’s history or a single day) and two phenomena (temperature or sea level). Novices overwhelmingly represented time moving from left-to-right, regardless of scale. In Study 3, 40 STEM novices were shown expert-made graphs where the direction of time varied. Novices had difficulty interpreting the expert-made graphs when time was represented moving in directions other than left-to-right. The study highlights the importance of considering representations of time and scale in STEM education and offers insights into how experts and novices approach visualizations. The findings inform the development of educational resources and strategies to improve students’ understanding of scientific concepts where time and space are intrinsically related.

     
    more » « less
  2. Abstract Field geologists are increasingly using unmanned aerial vehicles (UAVs or drones), although their use involves significant cognitive challenges for which geologists are not well trained. On the basis of surveying the user community and documenting experts’ use in the field, we identified five major problems, most of which are aligned with well-documented limits on cognitive performance. First, the images being sent from the UAV portray the landscape from multiple different view directions. Second, even with a constant view direction, the ability to move the UAV or zoom the camera lens results in rapid changes in visual scale. Third, the images from the UAVs are displayed too quickly for users, even experts, to assimilate efficiently. Fourth, it is relatively easy to get lost when flying, particularly if the user is unfamiliar with the area or with UAV use. Fifth, physical limitations on flight time are a source of stress, which renders the operator less effective. Many of the strategies currently employed by field geologists, such as postprocessing and photogrammetry, can reduce these problems. We summarize the cognitive science basis for these issues and provide some new strategies that are designed to overcome these limitations and promote more effective UAV use in the field. The goal is to make UAV-based geological interpretations in the field possible by recognizing and reducing cognitive load. 
    more » « less
  3. Abstract

    Understanding and communicating uncertainty is a key skill needed in the practice of science. However, there has been little research on the instruction of uncertainty in undergraduate science education. Our team designed a module within an online geoscience field course which focused on explicit instruction around uncertainty and provided students with an uncertainty rating scale to record and communicate their uncertainty with a common language. Students then explored a complex, real-world geological problem about which expert scientists had previously made competing claims through geologic maps. Provided with data, expert uncertainty ratings, and the previous claims, students made new geologic maps of their own and presented arguments about their claims in written form. We analyzed these reports along with assessments of uncertainty. Most students explicitly requested geologists’ uncertainty judgments in a post-course assessment when asked why scientists might differ in their conclusions and/or utilized the rating scale unprompted in their written arguments. Through the examination of both pre- and post-course assessments of uncertainty and students’ course-based assessments, we argue that explicit instruction around uncertainty can be introduced during undergraduate coursework and could facilitate geoscience novices developing into practicing geoscientists.

     
    more » « less
  4. null (Ed.)
    Abstract How do scientists generate and weight candidate queries for hypothesis testing, and how does learning from observations or experimental data impact query selection? Field sciences offer a compelling context to ask these questions because query selection and adaptation involves consideration of the spatiotemporal arrangement of data, and therefore closely parallels classic search and foraging behavior. Here we conduct a novel simulated data foraging study—and a complementary real-world case study—to determine how spatiotemporal data collection decisions are made in field sciences, and how search is adapted in response to in-situ data. Expert geoscientists evaluated a hypothesis by collecting environmental data using a mobile robot. At any point, participants were able to stop the robot and change their search strategy or make a conclusion about the hypothesis. We identified spatiotemporal reasoning heuristics, to which scientists strongly anchored, displaying limited adaptation to new data. We analyzed two key decision factors: variable-space coverage, and fitting error to the hypothesis. We found that, despite varied search strategies, the majority of scientists made a conclusion as the fitting error converged. Scientists who made premature conclusions, due to insufficient variable-space coverage or before the fitting error stabilized, were more prone to incorrect conclusions. We found that novice undergraduates used the same heuristics as expert geoscientists in a simplified version of the scenario. We believe the findings from this study could be used to improve field science training in data foraging, and aid in the development of technologies to support data collection decisions. 
    more » « less
  5. null (Ed.)
    Given the importance of fresh water, we investigated undergraduate students’ understanding of water flow and its consequences. We probed introductory geology students’ pre-instruction knowledge using a classroom management system at two large research-intensive universities. Open-ended clicker questions, where students click directly on diagrams using their smart device (e.g., cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and (2) velocity and erosion in a river channel. Approximately one-third of students correctly identified groundwater flow as having lateral and vertical components; however, the same number of students identified only vertical components to flow despite the diagram depicting enough topographic gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified zones of high velocity. However, for curved river channels, students incorrectly identified the inside of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that students have mental models of water flow that are not consistent with fluid dynamics. The use of students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual challenges associated with the complex spatial and temporal processes that govern water movement in the Earth system. 
    more » « less
  6. null (Ed.)