skip to main content


Search for: All records

Creators/Authors contains: "Shook, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Greenhouse gases trap heat within our atmosphere, leading to an unnatural increase in temperature. Carbon dioxide and its equivalent emissions have been a large focus when considering sustainability in the civil engineering field, with a reduction of global warming potential being a top priority. According to a 2017 report by the World Green Building Council, the construction and usage of buildings account for 39 percent of human carbon emissions in the United States, almost one third of which are from the extraction, manufacturing, and transportation of materials. Substituting wood for high emission materials could greatly reduce carbon if harvested and disposed of in a controlled way. To investigate this important issue, San Francisco State University and University of South Carolina partnered with Skidmore, Owings & Merrill LLP, a world leader in designing high-rise buildings, through a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site program, to investigate and quantify the embodied carbons of various slab system designs using a high-rise residential complex in San Francisco as a case study. Three concept designs were considered: a concrete building with cementitious replacement, a concrete building without cementitious replacement, and a concrete building with cementitious replacement and nail-laminated timber wood inlays inserted into various areas of the superstructure slabs. The composite structural slab system has the potential to surpass the limitations of wood-framed structures yet incorporate the carbon sequestration that makes wood a more sustainable material. The results show that wood substitution could decrease overall emissions from the aforementioned designs and reduce the environmental footprint of the construction industry. 
    more » « less
  2. null (Ed.)
    With a call in recent years to increase safety and enhance the value of emerging high-rise building clusters, skybridges as linking systems are attacking interest by urban designers and could play a key role in the development of our future cities. While the functional and economic benefits of the skybridges are realized, the effects of skybridges on structural systems are not widely understood. Researchers and practitioners in both academia and industry have been investigating the potential of the skybridge serving to increase the resiliency and sustainability of the connected structures. However, there is a gap between engineering science in academia and engineering practice in industry, which has previously limiting the research outcomes from becoming built realities. Partnering with an industry expert in high-rise building design, Skidmore, Owings & Merrill LLP, this study sought to better understand how coupling behaviors between high-rise structures using a skybridge affect various aspects of the individual and the linked structures. In this study, parametric data, including modal information, displacement, shear, and overturning moment were gathered from realistic high-rise structure models to evaluate the structural performance under static and dynamic loading when the skybridge is installed at various locations of the structures. 
    more » « less