skip to main content


Search for: All records

Creators/Authors contains: "Siddarth, Ashwin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    To reproduce a Digital Twin (DT) of a data center (DC), input data is required which is collected through site surveys. Data collection is an important step since accurate representation of a DC depends on capturing the necessary detail for various model fidelity levels of each DC component. However, guidance is lacking in this regard as to which components within the DC are crucial to achieve the level of accuracy desired for the computational model. And determining the input values of the component object parameters is an exercise in engineering judgement during site survey. Sensitivity analysis can be an effective methodology to determine how the level of simplification in component models can affect the model accuracy.In this study, a calibrated raised-floor DC model is used to study the sensitivity of a DC component's representation to the DC model accuracy. Commercial CFD tool, 6SigmaDC Room is used for modeling and simulation. A total of 8 DC components are considered and eventually ranked on the basis of time and effort required to collect model input data. For parametrized component object, the object's full range of input parameter values are considered, and simulations run. The results are compared with the baseline calibrated model to understand the trade-off between survey effort/cost and model accuracy. For the calibrated DC model and of the 8 components considered, it was observed that the chilled water piping branches, data cables and the cable penetration seal (found within cabinets) have considerable influence on the tile flow rate prediction accuracy. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. In typical data centers, the servers and IT equipment are cooled by air and almost half of total IT power is dedicated to cooling. Hybrid cooling is a combined cooling technology with both air and water, where the main heat generating components are cooled by water or water-based coolants and rest of the components are cooled by air supplied by CRAC or CRAH. Retrofitting the air-cooled servers with cold plates and pumps has the advantage over thermal management of CPUs and other high heat generating components. In a typical 1U server, the CPUs were retrofitted with cold plates and the server tested with raised coolant inlet conditions. The study showed the server can operate with maximum utilization for CPUs, DIMMs, and PCH for inlet coolant temperature from 25–45 °C following the ASHRAE guidelines. The server was also tested for failure scenarios of the pumps and fans with reducing numbers of fans and pumps. To reduce cooling power consumption at the facility level and increase air-side economizer hours, the hybrid cooled server can be operated at raised inlet air temperatures. The trade-off in energy savings at the facility level due to raising the inlet air temperatures versus the possible increase in server fan power and component temperatures is investigated. A detailed CFD analysis with a minimum number of server fans can provide a way to find an operating range of inlet air temperature for a hybrid cooled server. Changes in the model are carried out in 6SigmaET for an individual server and compared to the experimental data to validate the model. The results from this study can be helpful in determining the room level operating set points for data centers housing hybrid cooled server racks. 
    more » « less
  5. With an increase in the need for energy efficient data centers, a lot of research is being done to maximize the use of Air Side Economizers (ASEs), Direct Evaporative Cooling (DEC), Indirect Evaporative Cooling (IEC) and multistage Indirect/Direct Evaporative Cooling (I/DEC). The selection of cooling configurations installed in modular cooling units is based on empirical/analytical studies and domain knowledge that fail to account for the nonlinearities present in an operational data center. In addition to the ambient conditions, the attainable cold aisle temperature and humidity is also a function of the control strategy and the cooling setpoints in the data center.The primary objective of this study is to use Artificial Neural Network (ANN) modelling and Psychrometric bin analysis to assess the applicability of various cooling modes to a climatic condition. Training dataset for the ANN model is logged from the monitoring sensor array of a modular data center laboratory with an I/DEC module. The data-driven ANN model is utilized for predicting the cold aisle humidity and temperatures for different modes of cooling. Based on the predicted cold aisle temperature and humidity, cold aisle envelopes are represented on a psychrometric chart to evaluate the applicability of each cooling mode to the territorial climatic condition. Subsequently, outside air conditions favorable to each cooling mode in achieving cold aisle conditions, within the ASHRAE recommended environmental envelope, is also visualized on a psychrometric chart. Control strategies and opportunities to optimize the cooling system are discussed. 
    more » « less
  6. The objective of this work is to introduce the application of an artificial neural network (ANN) to assist in the evaporative cooling in data centers. To achieve this task, we employ the neural network algorithms to predict weather conditions outside the data center for direct evaporative cooling (DEC) operations. The predictive analysis helps optimize the cooling control strategy for maximizing the usage of evaporative cooling thereby improving the efficiency of the overall data center cooling system. A typical artificial neural network architecture is dynamic in nature and can perform adaptive learning in minimal computation time. A neural network model of a data center was created using operational historical data collected from a data center cooling control system. The neural network model allows the control of the modular data center (MDC) cooling at optimum configuration in two ways. First way is that the network model minimizes time delay for switching the cooling from one mode to the other. Second way, it improves the reaction behavior of the cooling equipment if an unexpected ambient condition change should come. The data center in consideration is a test bed modular data center that comprises of information Technology (IT) racks, Direct Evaporative cooling (DEC) and Indirect Evaporative Cooling (IEC) modules; the DEC/IEC are used together or in alternative mode to cool the data center room. The facility essentially utilizes outside ambient temperature and humidity conditions that are further conditioned by the DEC and IEC to cool the electronics, a concept know as air-side economization. Various parameters are related to the cooling system operation such as outside air temperature, IT heat load, cold aisle temperature, cold aisle humidity etc. are considered. Some of these parameters are fed into the artificial neural network as inputs and some are set as targets to train the neural network system. After the training the process is completed, certain bucket of data is tested and further used to validate the outputs for various other weather conditions. To make sure the analysis represents real world scenario, the operational data used are from real time data logged on the MDC cooling control unit. Overall, the neural network model is trained and is used to successfully predict the weather conditions and cooling control parameters. The prediction models have been demonstrated for the outputs that are static in nature (Levenberg Marquardt method) as well as the outputs that are dynamic in nature i.e., step-ahead & multistep ahead techniques. 
    more » « less
  7. Modern Information Technology (IT) servers are typically assumed to operate in quiescent conditions with almost zero static pressure differentials between inlet and exhaust. However, when operating in a data center containment system the IT equipment thermal status is a strong function of the non- homogenous environment of the air space, IT utilization workloads and the overall facility cooling system design. To implement a dynamic and interfaced cooling solution, the interdependencies of variabilities between the chassis, rack and room level must be determined. In this paper, the effect of positive as well as negative static pressure differential between inlet and outlet of servers on thermal performance, fan control schemes, the direction of air flow through the servers as well as fan energy consumption within a server is observed at the chassis level. In this study, a web server with internal air-flow paths segregated into two separate streams, each having dedicated fan/group of fans within the chassis, is operated over a range of static pressure differential across the server. Experiments were conducted to observe the steady-state temperatures of CPUs and fan power consumption. Furthermore, the server fan speed control scheme’s transient response to a typical peak in IT computational workload while operating at negative pressure differentials across the server is reported. The effects of the internal air flow paths within the chassis is studied through experimental testing and simulations for flow visualization. The results indicate that at higher positive differential pressures across the server, increasing server fans speeds will have minimal impact on the cooling of the system. On the contrary, at lower, negative differential pressure server fan power becomes strongly dependent on operating pressure differential. More importantly, it is shown that an imbalance of flow impedances in internal airflow paths and fan control logic can onset recirculation of exhaust air within the server. For accurate prediction of airflow in cases where negative pressure differential exists, this study proposes an extended fan performance curve instead of a regular fan performance curve to be applied as a fan boundary condition for Computational Fluid Dynamics simulations. 
    more » « less
  8. Rigid wet cooling media is a key component of direct and indirect evaporative cooling systems. Evaporation is the process of a substance in a liquid state changing to a gaseous state. When water evaporates only water molecules get evaporated and the other chemicals in the water are left behind on the surface as residue. Many studies have been conducted on how the change in air flow velocity, media depth, porosity and water distribution affect performance of the cooling system. The operational efficiency of the cooling media varies over its life cycle and depends primarily on temperature and speed of inlet air, water distribution system, type of pad and dimension of the pad.Although evaporative cooling when implemented with air-side economization enables efficiency gains, a trade-off between the system maintenance and its operational efficiency exists. In this study, the primary objective is to determine how calcium scale affects the overall performance of the cooling pad and the water system. Areas of the pad that are not wetted effectively allow air to pass through without being cooled and the edges between wetted and dry surface establish sites for scale formation. An Accelerated Degradation Testing (ADT) by rapid wetting and drying on the media pads at elevated levels of calcium is designed and conducted on the cellulose wet cooling media pad. This research focuses on monitoring the degradation that occurs over its usage and establish a key maintenance parameter for water used in media pad.As a novel study, preliminary tests were mandatory because there were no established standards for media pad degradation testing. Sump water conductivity is identified as the key maintenance parameter for monitoring sump replenishing and draining cycles which will result in reduced water usage. The average water conductivity in the sump during wetting cycles increases monotonically when ADT was performed on a new media pad. An empirical relationship between sump water conductivity and number of wetting cycles is proposed. This information will be very helpful for the manufacturers to guide their customers for maintenance of the media pad and sump water drain cycles. 
    more » « less
  9. When operating in direct evaporative cooling (DEC) mode, the amount of moisture added to a system can be controlled by frequently modulating water supply to the wet cooling media. Though many challenges arise due to geographical and site conditions, this concept can be applied to data centers to serve as a cost-effective alternative for maintaining the operating temperature of the facility at any weather condition. However, this method results in scale and mineral build up on the media because of an irregular water distribution. To prevent the scale formation, the operators allow the water supply continuously on the cooling media ultimately leading towards the high consumption of facility water and significantly deteriorating the Wet cooling media life. This challenge has been addressed for the first time by experimentally characterizing the vertically split distribution wet cooling media. These systems allow some section of the media to be wetted while other sections remain dry. Various configuration of vertically staged media may be achieved by dividing the full width of the media into two, three, four or more number of equal and unequal sections and providing individually controlled water distribution headers. To increase the number of stages and provide smooth transition from one stage to the other, a MATLAB code is written to find width of DEC media sections for known total width of the media and number of sections. Here, an experimental design to characterize the performance characteristics of a vertically split wet cooling media which has separate water distribution setup has been presented. Apart from relative humidity and temperature, other parameters of interests like pressure drop across the media and saturation efficiency of the rigid media are presented. In the unequal configuration, the media was tested for 0%, 33%, 66%, and 100%. This research provides a potential solution towards the limitation of direct evaporative cooling in terms of energy savings, facility water, reliability and contaminants. 
    more » « less