skip to main content


Search for: All records

Creators/Authors contains: "Simon, Joshua D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper, we present a chemical and kinematic analysis of two ultrafaint dwarf galaxies (UFDs), Aquarius II (Aqu II) and Boötes II (Boo II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo II (12), and the largest sample of red giant branch members with metallicity measurements for Aqu II (eight). In both UFDs, over 80% of targets selected based on Gaia proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu II, we measure a systemic velocity of −65.3 ± 1.8 km s−1and a metallicity of [Fe/H] =2.570.17+0.17. When compared with previous measurements, these values display a ∼6 km s−1difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo II, we measure a systemic velocity of130.41.1+1.4km s−1, more than 10 km s−1different from the literature, a metallicity almost 1 dex smaller at [Fe/H] =2.710.10+0.11, and a velocity dispersion 3 times smaller atσvhel=2.91.2+1.6km s−1. Additionally, we derive systemic proper-motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark-matter-dominated nature of Aqu II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low-velocity dispersion and corresponding low dark matter density.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. ABSTRACT

    Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 $\mathrm{\, {\rm M}_{\odot }}$). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted.

     
    more » « less
  3. Abstract We describe the discovery of a solar neighborhood ( d = 468 pc) binary system with a main-sequence sunlike star and a massive noninteracting black hole candidate. The spectral energy distribution of the visible star is described by a single stellar model. We derive stellar parameters from a high signal-to-noise Magellan/MIKE spectrum, classifying the star as a main-sequence star with T eff = 5972 K, log g = 4.54 , and M = 0.91 M ⊙ . The spectrum shows no indication of a second luminous component. To determine the spectroscopic orbit of the binary, we measured the radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over four months. We show that the velocity data are consistent with the Gaia astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of our spectroscopic data and the astrometry, we derive a companion mass of 11.39 − 1.31 + 1.51 M ⊙ . We conclude that this binary system harbors a massive black hole on an eccentric ( e = 0.46 ± 0.02), 185.4 ± 0.1 day orbit. These conclusions are independent of El-Badry et al., who recently reported the discovery of the same system. A joint fit to all available data yields a comparable period solution but a lower companion mass of 9.32 − 0.21 + 0.22 M ⊙ . Radial velocity fits to all available data produce a unimodal solution for the period that is not possible with either data set alone. The combination of both data sets yields the most accurate orbit currently available. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  4. Abstract The ultrafaint dwarf galaxy Reticulum II was enriched by a single rare and prolific r -process event. The r -process content of Reticulum II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find 72 − 12 + 10 % of the stars are r -process-enhanced, with a mean [ Ba / H ] = − 1.68 ± 0.07 and unresolved intrinsic dispersion σ [Ba/H] <0.20. The homogeneous r -process abundances imply that Ret II’s metals are well mixed by the time the r -enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultrafaint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r -process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r -enhanced stars in Ret II formed in the absence of substantial pristine gas accretion, perhaps indicating that ≈70% of Ret II stars formed after reionization. 
    more » « less
  5. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

     
    more » « less
  6. Abstract We present deep Hubble Space Telescope (HST) imaging of five faint dwarf galaxies associated with the nearby spiral NGC 253 (D ≈ 3.5 Mpc). Three of these are newly discovered dwarf galaxies, while all five were found in the Panoramic Imaging Survey of Centaurus and Sculptor, a Magellan+Megacam survey to identify faint dwarfs and other substructures in resolved stellar light around massive galaxies outside of the Local Group. Our HST data reach ≳3 magnitudes below the tip of the red giant branch for each dwarf, allowing us to derive their distances, structural parameters, and luminosities. All five systems contain mostly old, metal-poor stellar populations (age ∼12 Gyr, [M/H] ≲ −1.5) and have sizes ( r h ∼ 110–3000 pc) and luminosities ( M V ∼ −7 to −12 mag) largely consistent with Local Group dwarfs. The three new NGC 253 satellites are among the faintest systems discovered beyond the Local Group. We also use archival H i data to place limits on the gas content of our discoveries. Deep imaging surveys such as our program around NGC 253 promise to elucidate the faint end of the satellite luminosity function and its scatter across a range of galaxy masses, morphologies, and environments in the decade to come. 
    more » « less
  7. null (Ed.)