skip to main content


Search for: All records

Creators/Authors contains: "Simpson, I. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Single Column Atmosphere Model (SCAM) is a single column model version of the Community Atmosphere Model (CAM). Here we describe the functionality and features of SCAM6, available as part of CAM6 in the Community Earth System Model, version 2 (CESM2). SCAM6 features a wide selection of standard cases, as well as the ability to easily configure a case specified by the user based on a particular point in a CAM 3‐D simulation. This work illustrates how SCAM6 reproduces CAM6 results for physical parameterizations, mostly of moisture and clouds. We demonstrate how SCAM6 can be used for model development through different physics selections, as well as with parameter sweep experiments to highlight the sensitivity of cloud properties to the specification of the vapor deposition process in the cloud microphysics. Furthermore, we use SCAM6 to illustrate the sensitivity of CAM6 cloud radiative properties and precipitation to variable drop number (cloud microphysics properties). Finally, we illustrate how SCAM6 can be used to explore critical emergent processes such as cloud feedbacks and show that CAM6 cloud responses to surface warming in stratus and stratocumulus regimes are similar to those in CAM5. CAM6 has a larger response in the shallow cumulus regime than CAM5. CAM6 cloud feedbacks in the shallow cumulus regime are sensitive to turbulence parameters. SCAM6 is thus a valuable tool for model development, evaluation, and scientific analy sis and an important part of the model hierarchy in Community Earth System Model, version 2.

     
    more » « less
  2. Abstract

    Geoengineering methods could potentially offset aspects of greenhouse gas‐driven climate change. However, before embarking on any such strategy, a comprehensive understanding of its impacts must be obtained. Here, a 20‐member ensemble of simulations with the Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component is used to investigate the projected hydroclimate changes that occur when greenhouse gas‐driven warming, under a high emissions scenario, is offset with stratospheric aerosol geoengineering. Notable features of the late 21st century hydroclimate response, relative to present day, include a reduction in precipitation in the Indian summer monsoon, over much of Africa, Amazonia and southern Chile and a wintertime precipitation reduction over the Mediterranean. Over most of these regions, the soil desiccation that occurs with global warming is, however, largely offset by the geoengineering. A notable exception is India, where soil desiccation and an approximate doubling of the likelihood of monsoon failures occurs. The role of stratospheric heating in the simulated hydroclimate change is determined through additional experiments where the aerosol‐induced stratospheric heating is imposed as a temperature tendency, within the same model, under present day conditions. Stratospheric heating is found to play a key role in many aspects of projected hydroclimate change, resulting in a general wet‐get‐drier, dry‐get‐wetter pattern in the tropics and extratropical precipitation changes through midlatitude circulation shifts. While a rather extreme geoengineering scenario has been considered, many, but not all, of the precipitation features scale linearly with the offset global warming.

     
    more » « less
  3. Abstract

    Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2(4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling.

     
    more » « less