skip to main content


Search for: All records

Creators/Authors contains: "Singh, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The Seyfert galaxy NGC 2639 was known to exhibit three episodes of active galactic nuclei (AGN) jet/lobe activity. We present here the upgraded Giant Metrewave Radio Telescope (uGMRT) 735 MHz image of NGC 2639 showing a fourth episode as witnessed by the discovery of ∼9 kpc radio lobes misaligned with the previously known ∼1.5 kpc, ∼360 pc, and ∼3 pc jet features detected through the Karl G. Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA), respectively. Using the spectral ageing software brats, we derive the ages of the ∼9 kpc, ∼1.5 kpc, and ∼360 pc episodes to be, respectively, $34^{+4}_{-6}$, $11.8^{+1.7}_{-1.4}$, and $2.8^{+0.7}_{-0.5}$ Myr, and conclude that minor mergers occurred 9−22 Myr apart. NGC 2639 shows a deficit of molecular gas in its central ∼6 kpc region. The GALEX NUV image also shows a deficiency of recent star formation in the same region, while the star formation rate surface density in NGC 2639 is lower by a factor of 5−18 compared to the global Schmidt law of star-forming galaxies. This makes NGC 2639 a rare case of a Seyfert galaxy showing episodic jet activity and possible signatures of jet-driven AGN feedback.

     
    more » « less
  2. Misinformation in online spaces can stoke mistrust of established media, misinform the public and lead to radicalization. Hence, multiple automated algorithms for misinformation detection have been proposed in the recent past. However, the fairness (e.g., performance across left- and right- leaning news articles) of these algorithms has been repeatedly questioned, leading to decreased trust in such systems. This work motivates and grounds the need for an audit of machine learning based misinformation detection algorithms and possible ways to mitigate bias (if found). Using a large (N>100K) corpus of news articles, we report that multiple standard machine learning based misinformation detection approaches are susceptible to bias. Further, we find that an intuitive post-processing approach (Reject Option Classifier) can reduce bias while maintaining high accuracy in the above setting. The results pave the way for accurate yet fair misinformation detection algorithms. 
    more » « less
  3. Abstract An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228 Th and 226 Ra. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Abstract CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ∼250 kg of isotopic mass of 100 Mo. It will operate at ∼10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100 Mo-enriched Li 2 MoO 4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line from a 133 Ba source, as good as Ge semiconductor γ detectors in this energy range. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Abstract The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 νββ ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. 
    more » « less
  7. Free, publicly-accessible full text available June 1, 2024