skip to main content


Search for: All records

Creators/Authors contains: "Smale, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.

     

    more » « less
    Free, publicly-accessible full text available January 17, 2025
  2. Abstract

    The inorganic chlorine (Cly) and odd nitrogen (NOy) chemical families influence stratospheric O3. In January 2020 Australian wildfires injected record‐breaking amounts of smoke into the southern stratosphere. Within 1–2 months ground‐based and satellite observations showed Clyand NOywere repartitioned. By May, lower stratospheric HCl columns declined by ∼30% and ClONO2columns increased by 40%–50%. The Clyperturbations began and ended near the equinoxes, increased poleward, and peaked at the winter solstice. NO2decreased from February to April, consistent with sulfate aerosol reactions, but returned to typical values by June ‐ months before the Clyrecovery. Transport tracers show that dynamics not chemistry explains most of the observed O3decrease after April, with no significant transport earlier. Simulations assuming wildfire smoke behaves identically to sulfate aerosols couldn't reproduce observed Clychanges, suggesting they have different composition and chemistry. This undermines our ability to predict ozone in a changing climate.

     
    more » « less