skip to main content


Search for: All records

Creators/Authors contains: "Smith, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although smell influences many daily activities, researchers and practitioners have yet to thoroughly understand smells and the interactions involved in smell mixtures. We present work focused on artificially synthesizing odor mixtures, the evaluation techniques to measure the fidelity of such technologies, and the rich application scenarios that materialize with this capability. We highlight our system implementation and design considerations for an olfactory wearable for odor mixing. Then, we outline an approach to assess odor mixing behavior and efficacy, and finally, we discuss possible studies to contextualize the usefulness of our technology. 
    more » « less
    Free, publicly-accessible full text available April 23, 2024
  2. Parrots (Psittaciformes) are a well-studied, diverse group of birds distributed mainly in tropical and subtropical regions. Today, one-third of their species face extinction, mainly due to anthropogenic threats. Emerging tools in genetics have made major contributions to understanding basic and applied aspects of parrot biology in the wild and in captivity. In this review, we show how genetic methods have transformed the study of parrots by summarising important milestones in the advances of genetics and their implementations in research on parrots. We describe how genetics helped to further knowledge in specific research fields with a wide array of examples from the literature that address the conservation significance of (1) deeper phylogeny and historical biogeography; (2) species- and genus-level systematics and taxonomy; (3) conservation genetics and genomics; (4) behavioural ecology; (5) molecular ecology and landscape genetics; and (6) museomics and historical DNA. Finally, we highlight knowledge gaps to inform future genomic research on parrots. Our review shows that the application of genetic techniques to the study of parrot biology has far-reaching implications for addressing diverse research aims in a highly threatened and charismatic clade of birds. 
    more » « less
  3. null (Ed.)
    Abstract Computational approaches, especially finite element analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a “go-to” high biofidelic software tool to simulate and quantify the biomechanics of the foot–ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot–ankle complex. First, a brief history of computational modeling methods and finite element (FE) simulations for foot–ankle models is introduced. Second, a general approach to build an FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate an FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Finally, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot–ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot–ankle FE models in the future. 
    more » « less
  4. Abstract

    Few studies have addressed the nutritional ecology of galagos. Observations of galagos in the wild reveal that they rely on fruits and invertebrates to varying degrees depending on their availability. We conducted a 6‐week comparative dietary analysis of a colony of captive‐housed northern greater galagos (Otolemur garnettii), which included five females and six males with known life histories. We compared two experimental diets. The first was fruit dominated and the second was invertebrate dominated. For each diet, we examined dietary intake and apparent dry matter digestibility over the course of 6 weeks. We found significant differences between the apparent digestibility of the diets, with the “invertebrate” diet being more digestible than the “frugivorous” diet. The lower apparent digestibility of the “frugivorous” diet was driven by the higher fiber contents of the fruits provided to the colony. However, variation in apparent digestibility of both diets was found among individual galagos. The experimental design used in this study may provide useful dietary data for the management of captive colonies of galagos and other strepsirrhine primates. This study may also be helpful for understanding the nutritional challenges faced by free‐ranging galagos through time and across geographic space.

     
    more » « less
  5. null (Ed.)
    We present a theoretical proof that the “quantum enhancement” of two-photon absorption, thought to be a means to improve molecular spectroscopy and imaging, is tightly bounded by the physics of photonic entanglement and nonlinear response. 
    more » « less
  6. Abstract

    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$R<1.072with 90 % confidence level.

     
    more » « less
  7. Free, publicly-accessible full text available October 1, 2024