skip to main content


Search for: All records

Creators/Authors contains: "Smith, Cara F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom.

    Results

    Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition.

    Conclusions

    Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.

     
    more » « less
  2. Understanding how regulatory mechanisms evolve is critical for understanding the processes that give rise to novel phenotypes. Snake venom systems represent a valuable and tractable model for testing hypotheses related to the evolution of novel regulatory networks, yet the regulatory mechanisms underlying venom production remain poorly understood. Here, we use functional genomics approaches to investigate venom regulatory architecture in the prairie rattlesnake and identify cis -regulatory sequences (enhancers and promoters), trans -regulatory transcription factors, and integrated signaling cascades involved in the regulation of snake venom genes. We find evidence that two conserved vertebrate pathways, the extracellular signal-regulated kinase and unfolded protein response pathways, were co-opted to regulate snake venom. In one large venom gene family (snake venom serine proteases), this co-option was likely facilitated by the activity of transposable elements. Patterns of snake venom gene enhancer conservation, in some cases spanning 50 million yr of lineage divergence, highlight early origins and subsequent lineage-specific adaptations that have accompanied the evolution of venom regulatory architecture. We also identify features of chromatin structure involved in venom regulation, including topologically associated domains and CTCF loops that underscore the potential importance of novel chromatin structure to coevolve when duplicated genes evolve new regulatory control. Our findings provide a model for understanding how novel regulatory systems may evolve through a combination of genomic processes, including tandem duplication of genes and regulatory sequences, cis -regulatory sequence seeding by transposable elements, and diverse transcriptional regulatory proteins controlled by a co-opted regulatory cascade. 
    more » « less
  3. Abstract

    The study of recently diverged lineages whose geographical ranges come into contact can provide insight into the early stages of speciation and the potential roles of reproductive isolation in generating and maintaining species. Such insight can also be important for understanding the strategies and challenges for delimiting species within recently diverged species complexes. Here, we use mitochondrial and nuclear genetic data to study population structure, gene flow and demographic history across a geographically widespread rattlesnake clade, the western rattlesnake species complex (Crotalus cerberus, Crotalus viridis, Crotalus oreganus and relatives), which contains multiple lineages with ranges that overlap geographically or contact one another. We find evidence that the evolutionary history of this group does not conform to a bifurcating tree model and that pervasive gene flow has broadly influenced patterns of present-day genetic diversity. Our results suggest that lineage diversity has been shaped largely by drift and divergent selection in isolation, followed by secondary contact, in which reproductive isolating mechanisms appear weak and insufficient to prevent introgression, even between anciently diverged lineages. The complexity of divergence and secondary contact with gene flow among lineages also provides new context for why delimiting species within this complex has been difficult and contentious historically.

     
    more » « less