skip to main content


Search for: All records

Creators/Authors contains: "Smith, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues.

    Results

    We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins.

    Conclusion

    Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.

    Graphical abstract 
    more » « less
  2. Abstract

    Bald sea urchin disease (BSUD) is most likely a bacterial infection that occurs in a wide range of sea urchin species and causes the loss of surface appendages. The disease has a variety of additional symptoms, which may be the result of the many bacteria that are associated with BSUD. Previous studies have investigated causative agents of BSUD, however, there are few reports on the surface microbiome associated with the infection. Here, we report changes to the surface microbiome on purple sea urchins in a closed marine aquarium that contracted and then recovered from BSUD in addition to the microbiome of healthy sea urchins in a separate aquarium. 16S rRNA gene sequencing shows that microhabitats of different aquaria are characterized by different microbial compositions, and that diseased, recovered, and healthy sea urchins have distinct microbial compositions, which indicates that there is a correlation between microbial shifts and recovery from disease.

     
    more » « less
  3. Land, Lewis ; Kromhout, Clint ; Suter, Simeon (Ed.)
  4. Molecular clocks are the basis for dating the divergence between lineages over macroevolutionary timescales (~105to 108years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes display a clocklike behavior. This “epimutation clock” is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation clocks recapitulate known topologies and branching times of intraspecies phylogenetic trees in the self-fertilizing plantArabidopsis thalianaand the clonal seagrassZostera marina, which represent two major modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.

     
    more » « less
    Free, publicly-accessible full text available September 29, 2024
  5. ABSTRACT

    We explore the properties of an ‘almost’ dark cloud of neutral hydrogen (H i) using data from the Widefield ASKAP L-band Legacy All-sky Survey (WALLABY). Until recently, WALLABY J103508 − 283427 (also known as H1032 − 2819 or LEDA 2793457) was not known to have an optical counterpart, but we have identified an extremely faint optical counterpart in the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey Data Release 10. We measured the mean g-band surface brightness to be 27.0 ± 0.3 mag arcsec−2. The WALLABY data revealed the cloud to be closely associated with the interacting group Klemola 13 (also known as HIPASS J1034 − 28 and the Tol 9 group), which itself is associated with the Hydra cluster. In addition to WALLABY J103508 − 283427/H1032 − 2819, Klemola 13 contains 10 known significant galaxies and almost half of the total H i gas is beyond the optical limits of the galaxies. By combining the new WALLABY data with archival data from the Australia Telescope Compact Array, we investigate the H i distribution and kinematics of the system. We discuss the relative role of tidal interactions and ram pressure stripping in the formation of the cloud and the evolution of the system. The ease of detection of this cloud and intragroup gas is due to the sensitivity, resolution, and wide field of view of WALLABY, and showcases the potential of the full WALLABY survey to detect many more examples.

     
    more » « less
  6. ABSTRACT

    We present a pilot study of the atomic neutral hydrogen gas (H i) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H i in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H i detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H i-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H i content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H i content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario.

     
    more » « less
  7. Abstract Subglacial abrasion drives erosion for many glaciers, inundating forefields and proglacial marine environments with glaciogenic sediments. Theoretical treatments of this process suggest that bedrock abrasion rates scale linearly with the energy expended through rock-on-rock friction during slip, but this assumption lacks an empirical basis for general implementation. To test this approach, we simulated abrasion by sliding debris-laden ice over rock beds under subglacial conditions in a cryo-ring shear and a direct shear device. Miniscule volumes of erosion that occurred during each run were mapped with a white-light profilometer, and we measured the rock mechanical properties needed to constrain the energy expended through abrasion. We find that abraded volume per unit area increases linearly with average shear force at the bed and that abrasion rates increase linearly with basal power for plane beds. Lastly, only a small percentage (1%) of the energy partitioned to basal slip is dissipated by abrasion. These results confirm the basal-power abrasion rule is viable to implement in landscape evolution models. 
    more » « less
  8. The SpTransformer ( SpTrf ) gene family encodes a set of proteins that function in the sea urchin immune system. The gene sequences have a series of internal repeats in a mosaic pattern that is characteristic of this family. This mosaic pattern necessitates the insertion of large gaps, which has made alignments of the deduced protein sequences computationally difficult such that only manual alignments have been reported previously. Because manual alignments are time consuming for evaluating newly available SpTrf sequences, computational approaches were evaluated for the sequences reported previously. Furthermore, because two different manual alignments of the SpTrf sequences are feasible because of the multiple internal repeats, it is not known whether additional alternative alignments can be identified using different approaches. The bioinformatic program, PRANK, was used because it was designed to align sequences with large gaps and indels. The results from PRANK show that the alignments of the internal repeats are similar to those done manually, suggesting multiple feasible alignments for some regions. GUIDANCE based analysis of the alignments identified regions that were excellent and other regions that failed to align. This suggests that computational approaches have limits for aligning the SpTrf sequences that include multiple repeats and that require inserted gaps. Furthermore, it is unlikely that alternative alignments for the full-length SpTrf sequences will be identified. 
    more » « less
  9. Abstract

    While trait‐based approaches have been effectively leveraged by plant ecologists to advance our understanding of community responses to major global challenges, such as climate change and invasive species, the study of marine macroalgae is still mired in a functional group (FG) framework developed in the 1980s.

    In this paper, we used predominantly categorical data for 18 macroalgal traits that were accessible in public databases and/or the literature to explore their usefulness in a trait‐based framework for marine macroalgae. Species were clustered into emergent, data‐driven groups using a Gower dissimilarity matrix, then a k‐medoid clustering approach called partitioning around the medoids.

    We identified 14 emergent groups (EGs) that captured a spectrum of strategies used by different macroalgal species. However, significant ‘gaps’ in trait space may identify evolutionary constraints to algal adaptive strategies. Multivariate analysis showed how the 18 traits created trait space and drove the clustering. A spectrum of strategies and the influence of multiple traits imply that algal strategies are likely governed by complex multivariate, not bivariate, trade‐offs. Finally, we found that our EGs appeared to reflect multivariate trade‐offs and diverse ecological strategies more than the traditional FG model for macroalgae. We tested the usefulness of our EGs by comparing real‐world spatial distributions of species across habitats with known strong environmental filters to their area occupied in trait space. We found significant separation in trait space and divergent occupancy patterns across global distributions, attachment substrates and elevational zones. These results support the use of categorical data accessible in the literature as a useful step towards developing trait‐based ecology for marine macroalgae.

    Synthesis. Our findings indicate that readily accessible categorical traits produce emergent FGs that reflect environmental filtering and therefore demonstrate the power of trait‐based approaches over the current FG framework. Furthermore, we posit that categorical traits are a valuable and potentially complementary addition to a newly developing database of continuous traits because they encompass a broader, more globally accessible set of traits.

     
    more » « less