skip to main content


Search for: All records

Creators/Authors contains: "Snyder, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rodrigo, M.M. (Ed.)
    Successful knowledge co-construction during collaborative learning requires students to develop a shared conceptual understanding of the domain through effective social interactions. Developing and applying shared understanding of concepts and practices is directly impacted by the prior knowledge that students bring to their interactions. We present a systematic approach to analyze students’ knowledge co-construction processes as they work through a physics curriculum that includes inquiry activities, instructional tasks, and computational model-building activities. Utilizing a combination of students’ activity logs and discourse analysis, we assess how students’ knowledge impacts their knowledge co-construction processes. We hope a better understanding of how students’ co-construction processes develop and the difficulties they face will lead to better adaptive scaffolding of students’ learning and better support for collaborative learning. 
    more » « less
  2. Chinn, C. (Ed.)
    The integration of computational modeling into instruction in science classrooms is complex in that it requires the synergistic application of students’ developing science and computational thinking knowledge. This is not only difficult for students, but teachers often find it hard to parse the science content from the computational constructs to guide students when they have difficulties. Leveraging past literature that highlights the beneficial impact instructors can have when they immerse themselves in group problem-solving discussions, this paper examines the instructors’ role in facilitating students’ construction of and problem-solving with computational models. We utilize a case study approach to analyze instructor-facilitated, synchronous group discussions during applications of synergistic learning processes to understand how instructors may elicit students’ knowledge, misunderstanding, and difficulties to help guide, prompt, and engage groups in this complex task for more productive integration in K-12 science classrooms. We hope that this will lead to better scaffolding of students' learning, and better support for teachers when they use such curricula in classrooms. 
    more » « less
  3. Student discussions have been shown to be beneficial to student learning (Chi & Wylie, 2014), however, the impact of prior knowledge on these discussions is not fully understood. In this research, we analyze students’ synchronous spoken discussions to study how prior knowledge impacted group discussions and knowledge construction while constructing computational models of 1D and 2D motion. We present a method for evaluating the impact of prior knowledge on student discussions and individual work. We illustrate this method through a case study analysis of two groups with students across a spectrum of prior knowledge. Our exploratory findings suggest that students with low prior knowledge greatly benefit from group discussions followed by individual model construction. 
    more » « less
  4. Hmelo-Silver, C. E. (Ed.)
    This paper develops a systematic approach to identifying and analyzing high school students’ debugging strategies when they work together to construct computational models of scientific processes in a block-based programming environment. We combine Markov models derived from students’ activity logs with epistemic network analysis of their collaborative discourse to interpret and analyze their model building and debugging processes. We present a contrasting case study that illustrates the differences in debugging strategies between two groups of students and its impact on their model-building effectiveness. 
    more » « less
  5. null (Ed.)
    As technology advances, data driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research practice partnership that brings together STEM+C instructors and researchers from three universities and an education research and consulting group. We aim to use high frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings has improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less
  6. null (Ed.)
    As technology advances, data driven work is becoming increasingly important across all disciplines. Data science is an emerging field that encompasses a large array of topics including data collection, data preprocessing, data visualization, and data analysis using statistical and machine learning methods. As undergraduates enter the workforce in the future, they will need to “benefit from a fundamental awareness of and competence in data science”[9]. This project has formed a research practice partnership that brings together STEM+C instructors and researchers from three universities and an education research and consulting group. We aim to use high frequency monitoring data collected from real-world systems to develop and implement an interdisciplinary approach to enable undergraduate students to develop an understanding of data science concepts through individual STEM disciplines that include engineering, computer science, environmental science, and biology. In this paper, we perform an initial exploratory analysis on how data science topics are introduced into the different courses, with the ultimate goal of understanding how instructional modules and accompanying assessments can be developed for multidisciplinary use. We analyze information collected from instructor interviews and surveys, student surveys, and assessments from five undergraduate courses (243 students) at the three universities to understand aspects of data science curricula that are common across disciplines. Using a qualitative approach, we find commonalities in data science instruction and assessment components across the disciplines. This includes topical content, data sources, pedagogical approaches, and assessment design. Preliminary analyses of instructor interviews also suggest factors that affect the content taught and the assessment material across the five courses. These factors include class size, students’ year of study, students’ reasons for taking class, and students’ background expertise and knowledge. These findings indicate the challenges in developing data modules for multidisciplinary use. We hope that the analysis and reflections on our initial offerings has improved our understanding of these challenges, and how we may address them when designing future data science teaching modules. These are the first steps in a design-based approach to developing data science modules that may be offered across multiple courses. 
    more » « less
  7. The benefits of computational model building in STEM domains are well documented yet the synergistic learning processes that lead to the effective learning gains are not fully understood. In this paper, we analyze the discussions between students working collaboratively to build computational models to solve physics problems. From this collaborative discourse, we identify strategies that impact their model building and learning processes. 
    more » « less
  8. Introducing computational modeling into STEM classrooms can provide opportunities for the simultaneous learning of computational thinking (CT) and STEM. This paper describes the C2STEM modeling environment for learning physics, and the processes students can apply to their learning and modeling tasks. We use an unsupervised learning method to characterize student learning behaviors and how these behaviors relate to learning gains in STEM and CT. 
    more » « less
  9. The introduction of computational modeling into science curricula has been shown to benefit students’ learning, however the synergistic learning processes that contribute to these benefits are not fully understood. We study students’ synergistic learning of physics and computational thinking (CT) through their actions and collaborative discourse as they develop computational models in a visual block-structured environment. We adopt a case study approach to analyze students synergistic learning processes related to stopping conditions, initialization, and debugging episodes. Our findings show a pattern of evolving sophistication in synergistic reasoning for model-building activities. 
    more » « less
  10. Computational modeling has been shown to benefit integrated learning of science and computational thinking (CT), however the mechanics of this synergistic learning are not well understood. In this research, we examine discourse during collaborative computational model building through the lens of a collaborative problem solving framework to gain insights into collaboration and synergistic learning of high school physics and CT. We pilot our novel approach in the context of C2STEM, a designed modeling environment, and examine collaboration and synergistic learning episodes in a video capture of a dyad modeling 2D motion with constant velocities. Our findings exhibit the promise of our approach and lay the foundation for guiding future automated approaches to detecting the synergistic learning of science and CT. 
    more » « less